一:什么是继承
继承是一种创建新类的方式,新建的类可称为子类或派生类,父类又可称为基类或超类,子类会遗传父类的属性
注意:python支持多继承
在Python中,新建的类可以继承一个或多个父类
class Parent1(object):
x = 1111
class Parent2(object):
pass
class Sub1(Parent1): # 单继承
pass
class Sub2(Parent1,Parent2): # 多继承
pass
print(Sub1.__bases__) # (<class '__main__.Parent1'>,)
print(Sub2.__bases__) # (<class '__main__.Parent1'>, <class '__main__.Parent2'>)
print(Sub1.x) # 1111
ps1: 在Python2中有经典类与新式类之分
新式类:继承了object类的子类,以及该子类的子类子子类。。。
经典:没有继承object类的子类,以及该子类的子类子子类。。。
ps2:在Python3中没有继承任何类,那么会默认继承object类,所以Python3中所有的类都是新式类
print(Parent1.__bases__) # (<class 'object'>,)
print(Parent2.__bases__) # (<class 'object'>,)
Python的多继承
# 优点:子类可以同时遗传多个父类的属性,最大限度地重用代码
# 缺点:
# 1、违背人的思维习惯:继承表达的是一种什么"是"什么的关系
# 2、代码可读性会变差
# 3、不建议使用多继承,有可能会引发可恶的菱形问题,扩展性变差,
# 如果真的涉及到一个子类不可避免地要重用多个父类的属性,应该使用Mixins
二:为何要用继承
用来解决类与类之间代码冗余问题
三:如何实现继承
示范1:类与类之间存在冗余问题
class Student:
school='OLDBOY'
def __init__(self, name, age, sex):
self.name = name
self.age = age
self.sex = sex
def choose_course(self):
print('学生%s 正在选课' % self.name)
class Teacher:
school='OLDBOY'
def __init__(self, name, age, sex, salary, level):
self.name = name
self.age = age
self.sex = sex
self.salary = salary
self.level = level
def score(self):
print('老师 %s 正在给学生打分' % self.name)
示范2:基于继承解决类与类之间的冗余问题
class OldboyPeople:
school = 'OldBoy'
def __init__(self, name, age, sex):
self.name = name
self.age = age
self.sex = sex
class Student(OldboyPeople):
def choose_course(self):
print('学生%s 正在选课' % self.name)
stu_obj = Student('lili', 18, 'female')
# print(stu_obj.__dict__) # {'name': 'lili', 'age': 18, 'sex': 'female'}
# print(stu_obj.school) # OldBoy
# stu_obj.choose_course() # 学生lili 正在选课
class Teacher(OldboyPeople):
# 老师的空对象,'egon',18,'male',3000,10
def __init__(self, name, age, sex, salary, level):
# 指名道姓地跟父类OldboyPeople去要__init__
OldboyPeople.__init__(self, name, age, sex)
self.salary = salary
self.level = level
def score(self):
print('老师 %s 正在给学生打分' % self.name)
tea_obj = Teacher('egon', 18, 'male', 3000, 10)
# print(tea_obj.__dict__) # {'name': 'egon', 'age': 18, 'sex': 'male', 'salary': 3000, 'level': 10}
# print(tea_obj.school) # OldBoy
tea_obj.score() # 老师 egon 正在给学生打分
四、继承的实现原理
菱形问题
因为python中支持多继承,一个子类是可以同时继承多个父类的,这固然可以带来一个子类可以对多个不同父类加以重用的好处,但是这也带来了菱形问题(或称钻石问题,有时候也被称为“死亡钻石”)
这种继承结构下导致的问题称之为菱形问题:如果A中有一个方法,B和/或C都重写了该方法,而D没有重写它,那么D继承的是哪个版本的方法:B的还是C的?如下所示
class A(object):
def test(self):
print('from A')
class B(A):
def test(self):
print('from B')
class C(A):
def test(self):
print('from C')
class D(B,C):
pass
obj = D()
obj.test() # 结果为:from B
# 要想搞明白obj.test()是如何找到方法test的,需要了解python的继承实现原理
继承原理
针对python到底是如何实现继承的,每当我们定义一个类,python就会计算出一个方法解析顺序列表即MRO列表我们可以使用mro()
这个内置方法查看MRO列表的内容
print(D.mro())
[<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>]
# 合并父类MRO列表遵循的三个准则
'''
1.子类会先于父类被检查
2.多个父类会根据它们在列表中的顺序被检查
3.如果对下一个类存在两个合法的选择,选择第一个父类
'''
# 1.由对象发起的属性查找,会从对象自身的属性里检索,没有则会按照对象的类.mro()规定的顺序依次找下去,
# 2.由类发起的属性查找,会按照当前类.mro()规定的顺序依次找下去,
深度优先和广度优先
非菱形结构
class E:
def test(self):
print('from E')
class F:
def test(self):
print('from F')
class B(E):
def test(self):
print('from B')
class C(F):
def test(self):
print('from C')
class D:
def test(self):
print('from D')
class A(B, C, D):
# def test(self):
# print('from A')
pass
print(A.mro())
'''
[<class '__main__.A'>, <class '__main__.B'>, <class '__main__.E'>, <class '__main__.C'>, <class '__main__.F'>, <class '__main__.D'>, <class 'object'>]
'''
obj = A()
obj.test() # 结果为:from B
# 可依次注释上述类中的方法test来进行验证
-
菱形结构,经典类与新式类会有不同MRO,分别对应属性的两种查找方式
经典类:深度优先
class G: # 在python2中,未继承object的类及其子类,都是经典类 def test(self): print('from G') class E(G): def test(self): print('from E') class F(G): def test(self): print('from F') class B(E): def test(self): print('from B') class C(F): def test(self): print('from C') class D(G): def test(self): print('from D') class A(B,C,D): # def test(self): # print('from A') pass obj = A() obj.test() # 如上图,查找顺序为:obj->A->B->E->G->C->F->D->object # 可依次注释上述类中的方法test来进行验证,注意请在python2.x中进行测试
新式类:广度优先
class G(object): def test(self): print('from G') class E(G): def test(self): print('from E') class F(G): def test(self): print('from F') class B(E): def test(self): print('from B') class C(F): def test(self): print('from C') class D(G): def test(self): print('from D') class A(B,C,D): # def test(self): # print('from A') pass obj = A() obj.test() # 如上图,查找顺序为:obj->A->B->E->C->F->D->G->object # 可依次注释上述类中的方法test来进行验证