堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足时称之为堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)。
若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。如:
(a)大顶堆序列:(96,83,27,38,11,09)
(b)小顶堆序列:(12,36,24,85,47,30,53,91)
基本思想:初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大)的元素。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序。
时间复杂度分析:O(nlog(n)),堆排序是一种不稳定的排序算法。
因此,实现堆排序需解决两个问题:
1. 如何将n 个待排序的数建成堆?
2. 输出堆顶元素后,怎样调整剩余n-1 个元素,使其成为一个新堆?
首先讨论第二个问题:输出堆顶元素后,怎样对剩余n-1元素重新建成堆?
调整小顶堆的方法:
1)设有m 个元素的堆,输出堆顶元素后,剩下m-1 个元素。将堆底元素送入堆顶((最后一个元素与堆顶进行交换),堆被破坏,其原因仅是根结点不满足堆的性质。
2)将根结点与左、右子树中较小元素的进行交换。
3)若与左子树交换:如果左子树堆被破坏,即左子树的根结点不满足堆的性质,则重复方法 (2)
4)若与右子树交换,如果右子树堆被破坏,即右子树的根结点不满足堆的性质。则重复方法 (2)
5)继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。
称这个自根结点到叶子结点的调整过程为筛选。
再讨论第一个问题,如何将n 个待排序元素初始建堆?
建堆方法:对初始序列建堆的过程,就是一个反复进行筛选的过程。
1)n 个结点的完全二叉树,则最后一个结点是第n/2个结点的子树。
2)筛选从第n/2个结点为根的子树开始,该子树成为堆。
3)之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。
堆排序:
void HeapSort(int a[], int n) { //初始化堆 HeapBuilding(a, n); //从最后一个节点开始进行调整 for (int i=n-1; i>0; i--) { //交换堆顶元素和最后一个元素 int temp = a[0]; a[0] = a[i]; a[i] = temp; //每次交换后都要进行调整 HeapAdjusting(a, 0, i); } }
建堆:
void HeapBuilding(int a[], int n) { //从最后一个有孩子节点的位置开始调整,最后一个有孩子节点的位置为(n-1)/2 for (int i=(n-1)/2; i>=0; i--) HeapAdjusting(a, i, n); }
调整堆:
void HeapAdjusting(int a[], int root, int n) { int temp = a[root]; int child = 2*root+1; //左孩子的位置 while (child<n) { //找到孩子节点中较小的那个 if (child+1<n && a[child+1]<a[child]) child++; //如果较大的孩子节点小于父节点,用较小的子节点替换父节点,并重新设置下一个需要调整的父节点和子节点。 if (a[root]>a[child]) { a[root] = a[child]; root = child; child = 2*root+1; } else break; //将调整前父节点的值赋给调整后的位置。 a[root] = temp; } }