1.0.2.RELEASE
Copyright © 2016 Pivotal Software Inc.
Table of Contents
The Spring for Apache Kafka project applies core Spring concepts to the development of Kafka-based messaging solutions. We provide a "template" as a high-level abstraction for sending messages. We also provide support for Message-driven POJOs.
This first part of the reference documentation is a high-level overview of Spring for Apache Kafka and the underlying concepts and some code snippets that will get you up and running as quickly as possible.
This is the 5 minute tour to get started with Spring Kafka.
Prerequisites: install and run Apache Kafka Then grab the spring-kafka JAR and all of its dependencies - the easiest way to do that is to declare a dependency in your build tool, e.g. for Maven:
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>1.0.2.RELEASE</version>
</dependency>
And for Gradle:
compile 'org.springframework.kafka:spring-kafka:1.0.2.RELEASE'
- Apache Kafka 0.9.0.1
- Tested with Spring Framework version dependency is 4.2.5 but it is expected that the framework will work with earlier versions of Spring.
- Annotation-based listeners require Spring Framework 4.1 or higher, however.
- Minimum Java version: 7.
Using plain Java to send and receive a message:
@Test public void testAutoCommit() throws Exception { logger.info("Start auto"); ContainerProperties containerProps = new ContainerProperties("topic1", "topic2"); KafkaMessageListenerContainer<Integer, String> container = createContainer(containerProps); final CountDownLatch latch = new CountDownLatch(4); containerProps.setMessageListener(new MessageListener<Integer, String>() { @Override public void onMessage(ConsumerRecord<Integer, String> message) { logger.info("received: " + message); latch.countDown(); } }); container.setBeanName("testAuto"); container.start(); Thread.sleep(1000); // wait a bit for the container to start KafkaTemplate<Integer, String> template = createTemplate(); template.setDefaultTopic(topic1); template.sendDefault(0, "foo"); template.sendDefault(2, "bar"); template.sendDefault(0, "baz"); template.sendDefault(2, "qux"); template.flush(); assertTrue(latch.await(60, TimeUnit.SECONDS)); container.stop(); logger.info("Stop auto"); }
private KafkaMessageListenerContainer<Integer, String> createContainer(
ContainerProperties containerProps) {
Map<String, Object> props = consumerProps();
DefaultKafkaConsumerFactory<Integer, String> cf =
new DefaultKafkaConsumerFactory<Integer, String>(props);
KafkaMessageListenerContainer<Integer, String> container =
new KafkaMessageListenerContainer<>(cf, containerProps);
return container;
}
private KafkaTemplate<Integer, String> createTemplate() {
Map<String, Object> senderProps = senderProps();
ProducerFactory<Integer, String> pf =
new DefaultKafkaProducerFactory<Integer, String>(senderProps);
KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf);
return template;
}
private Map<String, Object> consumerProps() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, group);
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
return props;
}
private Map<String, Object> senderProps() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.RETRIES_CONFIG, 0);
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
return props;
}
A similar example but with Spring configuration in Java:
@Autowired private Listener listener; @Autowired private KafkaTemplate<Integer, String> template; @Test public void testSimple() throws Exception { waitListening("foo"); template.send("annotated1", 0, "foo"); assertTrue(this.listener.latch1.await(10, TimeUnit.SECONDS)); } @Configuration @EnableKafka public class Config { @Bean ConcurrentKafkaListenerContainerFactory<Integer, String> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); return factory; } @Bean public ConsumerFactory<Integer, String> consumerFactory() { return new DefaultKafkaConsumerFactory<>(consumerConfigs()); } @Bean public Map<String, Object> consumerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString()); ... return props; } @Bean public Listener listener() { return new Listener(); } @Bean public ProducerFactory<Integer, String> producerFactory() { return new DefaultKafkaProducerFactory<>(producerConfigs()); } @Bean public Map<String, Object> producerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString()); ... return props; } @Bean public KafkaTemplate<Integer, String> kafkaTemplate() { return new KafkaTemplate<Integer, String>(producerFactory()); } }
public class Listener {
private final CountDownLatch latch1 = new CountDownLatch(1);
@KafkaListener(id = "foo", topics = "annotated1")
public void listen1(String foo) {
this.latch1.countDown();
}
}
This part of the reference documentation details the various components that comprise Spring for Apache Kafka. The main chapter covers the core classes to develop a Kafka application with Spring.
The KafkaTemplate
wraps a producer and provides convenience methods to send data to kafka topics. Both asynchronous and synchronous methods are provided, with the async methods returning a Future
.
ListenableFuture<SendResult<K, V>> sendDefault(V data);
ListenableFuture<SendResult<K, V>> sendDefault(K key, V data);
ListenableFuture<SendResult<K, V>> sendDefault(int partition, K key, V data);
ListenableFuture<SendResult<K, V>> send(String topic, V data);
ListenableFuture<SendResult<K, V>> send(String topic, K key, V data);
ListenableFuture<SendResult<K, V>> send(String topic, int partition, V data);
ListenableFuture<SendResult<K, V>> send(String topic, int partition, K key, V data);
ListenableFuture<SendResult<K, V>> send(Message<?> message);
// Flush the producer.
void flush();
The first 3 methods require that a default topic has been provided to the template.
To use the template, configure a producer factory and provide it in the template’s constructor:
@Bean public ProducerFactory<Integer, String> producerFactory() { return new DefaultKafkaProducerFactory<>(producerConfigs()); } @Bean public Map<String, Object> producerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); ... return props; } @Bean public KafkaTemplate<Integer, String> kafkaTemplate() { return new KafkaTemplate<Integer, String>(producerFactory()); }
The template can also be configured using standard <bean/>
definitions.
Then, to use the template, simply invoke one of its methods.
When using the methods with a Message<?>
parameter, topic, partition and key information is provided in a message header:
KafkaHeaders.TOPIC
KafkaHeaders.PARTITION_ID
KafkaHeaders.MESSAGE_KEY
with the message payload being the data.
Optionally, you can configure the KafkaTemplate
with a ProducerListener
to get an async callback with the results of the send (success or failure) instead of waiting for the Future
to complete.
public interface ProducerListener<K, V> {
void onSuccess(String topic, Integer partition, K key, V value, RecordMetadata recordMetadata);
void onError(String topic, Integer partition, K key, V value, Exception exception);
boolean isInterestedInSuccess();
}
By default, the template is configured with a LoggingProducerListener
which logs errors and does nothing when the send is successful.
onSuccess
is only called if isInterestedInSuccess
returns true
.
For convenience, the abstract ProducerListenerAdapter
is provided in case you only want to implement one of the methods. It returns false
forisInterestedInSuccess
.
Notice that the send methods return a ListenableFuture<SendResult>
. You can register a callback with the listener to receive the result of the send asynchronously.
ListenableFuture<SendResult<Integer, String>> future = template.send("foo");
future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {
@Override
public void onSuccess(SendResult<Integer, String> result) {
...
}
@Override
public void onFailure(Throwable ex) {
...
}
});
The SendResult
has two properties, a ProducerRecord
and RecordMetadata
; refer to the Kafka API documentation for information about those objects.
If you wish to block the sending thread, to await the result, you can invoke the future’s get()
method. You may wish to invoke flush()
before waiting or, for convenience, the template has a constructor with an autoFlush
parameter which will cause the template to flush()
on each send. Note, however that flushing will likely significantly reduce performance.
Messages can be received by configuring a MessageListenerContainer
and providing a MessageListener
, or by using the @KafkaListener
annotation.
Two MessageListenerContainer
implementations are provided:
KafkaMessageListenerContainer
ConcurrentMessageListenerContainer
The KafkaMessageListenerContainer
receives all message from all topics/partitions on a single thread. The ConcurrentMessageListenerContainer
delegates to 1 or more KafkaMessageListenerContainer
s to provide multi-threaded consumption.
The following constructors are available.
public KafkaMessageListenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)
public KafkaMessageListenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties,
TopicPartitionInitialOffset... topicPartitions)
Each takes a ConsumerFactory
and information about topics and partitions, as well as other configuration in a ContainerProperties
object. The second constructor is used by the ConcurrentMessageListenerContainer
(see below) to distribute TopicPartitionInitialOffset
across the consumer instances.ContainerProperties
has the following constructors:
public ContainerProperties(TopicPartitionInitialOffset... topicPartitions)
public ContainerProperties(String... topics)
public ContainerProperties(Pattern topicPattern)
The first takes an array of TopicPartitionInitialOffset
arguments to explicitly instruct the container which partitions to use (using the consumer assign()
method), and with an optional initial offset: a positive value is an absolute offset; a negative value is relative to the current last offset within a partition. The offsets are applied when the container is started. The second takes an array of topics and Kafka allocates the partitions based on the group.id
property - distributing partitions across the group. The third uses a regex Pattern
to select the topics.
Refer to the JavaDocs for ContainerProperties
for more information about the various properties that can be set.
The single constructor is similar to the first KafkaListenerContainer
constructor:
public ConcurrentMessageListenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)
It also has a property concurrency
, e.g. container.setConcurrency(3)
will create 3 KafkaMessageListenerContainer
s.
For the first constructor, kafka will distribute the partitions across the consumers. For the second constructor, the ConcurrentMessageListenerContainer
distributes the TopicPartition
s across the delegate KafkaMessageListenerContainer
s.
If, say, 6 TopicPartition
s are provided and the concurrency
is 3; each container will get 2 partitions. For 5 TopicPartition
s, 2 containers will get 2 partitions and the third will get 1. If the concurrency
is greater than the number of TopicPartitions
, the concurrency
will be adjusted down such that each container will get one partition.
Several options are provided for committing offsets. If the enable.auto.commit
consumer property is true, kafka will auto-commit the offsets according to its configuration. If it is false, the containers support the following AckMode
s.
The consumer poll()
method will return one or more ConsumerRecords
; the MessageListener
is called for each record; the following describes the action taken by the container for each AckMode
:
- RECORD - commit the offset when the listener returns after processing the record.
- BATCH - commit the offset when all the records returned by the
poll()
have been processed. - TIME - commit the offset when all the records returned by the
poll()
have been processed as long as theackTime
since the last commit has been exceeded. - COUNT - commit the offset when all the records returned by the
poll()
have been processed as long asackCount
records have been received since the last commit. - COUNT_TIME - similar to TIME and COUNT but the commit is performed if either condition is true.
- MANUAL - the message listener (
AcknowledgingMessageListener
) is responsible toacknowledge()
theAcknowledgment
; after which, the same semantics asBATCH
are applied. - MANUAL_IMMEDIATE - commit the offset immediately when the
Acknowledgment.acknowledge()
method is called by the listener.
|
The commitSync()
or commitAsync()
method on the consumer is used, depending on the syncCommits
container property.
public interface AcknowledgingMessageListener<K, V> {
void onMessage(ConsumerRecord<K, V> record, Acknowledgment acknowledgment);
}
public interface Acknowledgment {
void acknowledge();
}
This gives the listener control over when offsets are committed.
The @KafkaListener
annotation provides a mechanism for simple POJO listeners:
public class Listener {
@KafkaListener(id = "foo", topics = "myTopic")
public void listen(String data) {
...
}
}
This mechanism requires a listener container factory, which is used to configure the underlying ConcurrentMessageListenerContainer
: by default, a bean with namekafkaListenerContainerFactory
is expected.
@Bean KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setConcurrency(3); factory.getContainerProperties().setPollTimeout(3000); return factory; } @Bean public ConsumerFactory<Integer, String> consumerFactory() { return new DefaultKafkaConsumerFactory<>(consumerConfigs()); } @Bean public Map<String, Object> consumerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString()); ... return props; }
Notice that to set container properties, you must use the getContainerProperties()
method on the factory. It is used as a template for the actual properties injected into the container.
You can also configure POJO listeners with explicit topics and partitions (and, optionally, their initial offsets):
@KafkaListener(id = "bar", topicPartitions = { @TopicPartition(topic = "topic1", partitions = { "0", "1" }), @TopicPartition(topic = "topic2", partitions = "0", partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100")) }) public void listen(ConsumerRecord<?, ?> record) { ... }
Each partition can be specified in the partitions
or partitionOffsets
attribute, but not both.
When using manual AckMode
, the listener can also be provided with the Acknowledgment
; this example also shows how to use a different container factory.
@KafkaListener(id = "baz", topics = "myTopic", containerFactory = "kafkaManualAckListenerContainerFactory") public void listen(String data, Acknowledgment ack) { ... ack.acknowledge(); }
Finally, metadata about the message is available from message headers:
@KafkaListener(id = "qux", topicPattern = "myTopic1") public void listen(@Payload String foo, @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) Integer key, @Header(KafkaHeaders.RECEIVED_PARTITION_ID) int partition, @Header(KafkaHeaders.RECEIVED_TOPIC) String topic) { ... }
In certain scenarios, such as rebalancing, a message may be redelivered that has already been processed. The framework cannot know whether such a message has been processed or not, that is an application-level function. This is known as the Idempotent Receiver pattern and Spring Integration provides an implementation thereof.
The Spring for Apache Kafka project also provides some assistance by means of the FilteringMessageListenerAdapter
class, which can wrap yourMessageListener
. This class takes an implementation of RecordFilterStrategy
where you implement the filter
method to signal that a message is a duplicate and should be discarded.
A FilteringAcknowledgingMessageListenerAdapter
is also provided for wrapping an AcknowledgingMessageListener
. This has an additional propertyackDiscarded
which indicates whether the adapter should acknowledge the discarded record; it is true
by default.
When using @KafkaListener
, set the RecordFilterStrategy
(and optionally ackDiscarded
) on the container factory and the listener will be wrapped in the appropriate filtering adapter.
If your listener throws an exception, the default behavior is to invoke the ErrorHandler
, if configured, or logged otherwise.
To retry deliveries, convenient listener adapters - RetryingMessageListenerAdapter
and RetryingAcknowledgingMessageListenerAdapter
are provided, depending on whether you are using a MessageListener
or an AcknowledgingMessageListener
.
These can be configured with a RetryTemplate
and RecoveryCallback<Void>
- see the spring-retry project for information about these components. If a recovery callback is not provided, the exception is thrown to the container after retries are exhausted. In that case, the ErrorHandler
will be invoked, if configured, or logged otherwise.
When using @KafkaListener
, set the RetryTemplate
(and optionally recoveryCallback
) on the container factory and the listener will be wrapped in the appropriate retrying adapter.
Apache Kafka provides a high-level API for serializing/deserializing record values as well as their keys. It is present with theorg.apache.kafka.common.serialization.Serializer<T>
and org.apache.kafka.common.serialization.Deserializer<T>
abstractions with some built-in implementations. Meanwhile we can specify simple (de)serializer classes using Producer and/or Consumer configuration properties, e.g.:
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
...
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
for more complex or particular cases, the KafkaConsumer
, and therefore KafkaProducer
, provides overloaded constructors to accept (De)Serializer
instances forkeys
and/or values
, respectively.
To meet this API, the DefaultKafkaProducerFactory
and DefaultKafkaConsumerFactory
also provide properties to allow to inject a custom (De)Serializer
to target Producer
/Consumer
.
For this purpose Spring for Apache Kafka also provides JsonSerializer
/JsonDeserializer
implementations based on the Jackson JSON processor. WhenJsonSerializer
is pretty simple and just lets to write any Java object as a JSON byte[]
, the JsonDeserializer
requires an additional Class<?> targetType
argument to allow to deserializer consumed byte[]
to the proper target object. The JsonDeserializer
can be extended to the particular generic type, when the last one is resolved at runtime, instead of compile-time additional type
argument:
JsonDeserializer<Bar> barDeserializer = new JsonDeserializer<>(Bar.class);
...
JsonDeserializer<Foo> fooDeserializer = new JsonDeserializer<Foo>() { };
Both JsonSerializer
and JsonDeserializer
can be customized with provided ObjectMapper
. Plus you can extend them to implement some particular configuration logic in the configure(Map<String, ?> configs, boolean isKey)
method.
Although Serializer
/Deserializer
API is pretty simple and flexible from the low-level Kafka Consumer
and Producer
perspective, it is not enough on the Messaging level, where KafkaTemplate
and @KafkaListener
are present. To easy convert to/from org.springframework.messaging.Message
, Spring for Apache Kafka provides MessageConverter
abstraction with the MessagingMessageConverter
implementation and its StringJsonMessageConverter
customization. TheMessageConverter
can be injected into KafkaTemplate
instance directly and via AbstractKafkaListenerContainerFactory
bean definition for the@KafkaListener.containerFactory()
property:
@Bean public KafkaListenerContainerFactory<?> kafkaJsonListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setMessageConverter(new StringJsonMessageConverter()); return factory; } ... @KafkaListener(topics = "jsonData", containerFactory = "kafkaJsonListenerContainerFactory") public void jsonListener(Foo foo) { ... }
While efficient, one problem with asynchronous consumers is detecting when they are idle - users might want to take some action if no messages arrive for some period of time.
You can configure the listener container to publish a ListenerContainerIdleEvent
when some time passes with no message delivery. While the container is idle, an event will be published every idleEventInterval
milliseconds.
To configure this feature, set the idleEventInterval
on the container:
@Bean public KafKaMessageListenerContainer(ConnectionFactory connectionFactory) { ContainerProperties containerProps = new ContainerProperties("topic1", "topic2"); ... containerProps.setIdleEventInterval(60000L); ... KafKaMessageListenerContainer<String, String> container = new KafKaMessageListenerContainer<>(...); return container; }
Or, for a @KafkaListener
…
@Bean public ConcurrentKafkaListenerContainerFactory kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); ... factory.getContainerProperties().setIdleEventInterval(60000L); ... return factory; }
In each of these cases, an event will be published once per minute while the container is idle.
You can capture these events by implementing ApplicationListener
- either a general listener, or one narrowed to only receive this specific event. You can also use@EventListener
, introduced in Spring Framework 4.2.
The following example combines the @KafkaListener
and @EventListener
into a single class. It’s important to understand that the application listener will get events for all containers so you may need to check the listener id if you want to take specific action based on which container is idle. You can also use the @EventListener
condition
for this purpose.
The events have 4 properties:
source
- the listener container instanceid
- the listener id (or container bean name)idleTime
- the time the container had been idle when the event was publishedtopicPartitions
- the topics/partitions that the container was assigned at the time the event was generated
public class Listener { @KafkaListener(id = "qux", topics = "annotated") public void listen4(@Payload String foo, Acknowledgment ack) { ... } @EventListener(condition = "event.listenerId.startsWith('qux-')") public void eventHandler(ListenerContainerIdleEvent event) { this.event = event; eventLatch.countDown(); } }
Important | |
---|---|
Event listeners will see events for all containers; so, in the example above, we narrow the events received based on the listener ID. Since containers created for the |
Caution | |
---|---|
If you wish to use the idle event to stop the lister container, you should not call |
The spring-kafka-test
jar contains some useful utilities to assist with testing your applications.
o.s.kafka.test.utils.KafkaUtils
provides some static methods to set up producer and consumer properties:
/**
* Set up test properties for an {@code <Integer, String>} consumer.
* @param group the group id.
* @param autoCommit the auto commit.
* @param embeddedKafka a {@link KafkaEmbedded} instance.
* @return the properties.
*/
public static Map<String, Object> consumerProps(String group, String autoCommit,
KafkaEmbedded embeddedKafka) { ... }
/**
* Set up test properties for an {@code <Integer, String>} producer.
* @param embeddedKafka a {@link KafkaEmbedded} instance.
* @return the properties.
*/
public static Map<String, Object> senderProps(KafkaEmbedded embeddedKafka) { ... }
A JUnit @Rule
is provided that creates an embedded kafka server.
/**
* Create embedded Kafka brokers.
* @param count the number of brokers.
* @param controlledShutdown passed into TestUtils.createBrokerConfig.
* @param topics the topics to create (2 partitions per).
*/
public KafkaEmbedded(int count, boolean controlledShutdown, String... topics) { ... }
/**
*
* Create embedded Kafka brokers.
* @param count the number of brokers.
* @param controlledShutdown passed into TestUtils.createBrokerConfig.
* @param partitions partitions per topic.
* @param topics the topics to create.
*/
public KafkaEmbedded(int count, boolean controlledShutdown, int partitions, String... topics) { ... }
The embedded kafka class has a utility method allowing you to consume for all the topics it created:
Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false", embeddedKafka);
DefaultKafkaConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<Integer, String>(
consumerProps);
Consumer<Integer, String> consumer = cf.createConsumer();
embeddedKafka.consumeFromAllEmbeddedTopics(consumer);
The KafkaTestUtils
has some utility methods to fetch results from the consumer:
/**
* Poll the consumer, expecting a single record for the specified topic.
* @param consumer the consumer.
* @param topic the topic.
* @return the record.
* @throws org.junit.ComparisonFailure if exactly one record is not received.
*/
public static <K, V> ConsumerRecord<K, V> getSingleRecord(Consumer<K, V> consumer, String topic) { ... }
/**
* Poll the consumer for records.
* @param consumer the consumer.
* @return the records.
*/
public static <K, V> ConsumerRecords<K, V> getRecords(Consumer<K, V> consumer) { ... }
Usage:
...
template.sendDefault(0, 2, "bar");
ConsumerRecord<Integer, String> received = KafkaTestUtils.getSingleRecord(consumer, "topic");
...
When the embedded server is started by JUnit, it sets a system property spring.embedded.kafka.brokers
to the address of the broker(s). A convenient constantKafkaEmbedded.SPRING_EMBEDDED_KAFKA_BROKERS
is provided for this property.
The o.s.kafka.test.hamcrest.KafkaMatchers
provides the following matchers:
/**
* @param key the key
* @param <K> the type.
* @return a Matcher that matches the key in a consumer record.
*/
public static <K> Matcher<ConsumerRecord<K, ?>> hasKey(K key) { ... }
/**
* @param value the value.
* @param <V> the type.
* @return a Matcher that matches the value in a consumer record.
*/
public static <V> Matcher<ConsumerRecord<?, V>> hasValue(V value) { ... }
/**
* @param partition the partition.
* @return a Matcher that matches the partition in a consumer record.
*/
public static Matcher<ConsumerRecord<?, ?>> hasPartition(int partition) { ... }
/**
* @param key the key
* @param <K> the type.
* @return a Condition that matches the key in a consumer record.
*/
public static <K> Condition<ConsumerRecord<K, ?>> key(K key) { ... }
/**
* @param value the value.
* @param <V> the type.
* @return a Condition that matches the value in a consumer record.
*/
public static <V> Condition<ConsumerRecord<?, V>> value(V value) { ... }
/**
* @param partition the partition.
* @return a Condition that matches the partition in a consumer record.
*/
public static Condition<ConsumerRecord<?, ?>> partition(int partition) { ... }
Putting it all together:
public class KafkaTemplateTests {
private static final String TEMPLATE_TOPIC = "templateTopic";
@ClassRule
public static KafkaEmbedded embeddedKafka = new KafkaEmbedded(1, true, TEMPLATE_TOPIC);
@Test
public void testTemplate() throws Exception {
Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false", embeddedKafka);
DefaultKafkaConsumerFactory<Integer, String> cf =
new DefaultKafkaConsumerFactory<Integer, String>(consumerProps);
KafkaMessageListenerContainer<Integer, String> container =
new KafkaMessageListenerContainer<>(cf, TEMPLATE_TOPIC);
final BlockingQueue<ConsumerRecord<Integer, String>> records = new LinkedBlockingQueue<>();
container.setMessageListener(new MessageListener<Integer, String>() {
@Override
public void onMessage(ConsumerRecord<Integer, String> record) {
System.out.println(record);
records.add(record);
}
});
container.setBeanName("templateTests");
container.start();
ContainerTestUtils.waitForAssignment(container, embeddedKafka.getPartitionsPerTopic());
Map<String, Object> senderProps = KafkaTestUtils.senderProps(embeddedKafka);
ProducerFactory<Integer, String> pf =
new DefaultKafkaProducerFactory<Integer, String>(senderProps);
KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf);
template.setDefaultTopic(TEMPLATE_TOPIC);
template.sendDefault("foo");
assertThat(records.poll(10, TimeUnit.SECONDS), hasValue("foo"));
template.sendDefault(0, 2, "bar");
ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS);
assertThat(received, hasKey(2));
assertThat(received, hasPartition(0));
assertThat(received, hasValue("bar"));
template.send(TEMPLATE_TOPIC, 0, 2, "baz");
received = records.poll(10, TimeUnit.SECONDS);
assertThat(received, hasKey(2));
assertThat(received, hasPartition(0));
assertThat(received, hasValue("baz"));
}
}
The above uses the hamcrest matchers; with AssertJ
, the final part looks like this…
...
assertThat(records.poll(10, TimeUnit.SECONDS)).has(value("foo"));
template.sendDefault(0, 2, "bar");
ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS);
assertThat(received).has(key(2));
assertThat(received).has(partition(0));
assertThat(received).has(value("bar"));
template.send(TEMPLATE_TOPIC, 0, 2, "baz");
received = records.poll(10, TimeUnit.SECONDS);
assertThat(received).has(key(2));
assertThat(received).has(partition(0));
assertThat(received).has(value("baz"));
}
}
This part of the reference shows how to use the spring-integration-kafka
module of Spring Integration.
This documentation pertains to versions 2.0.0 and above; for documentation for earlier releases, see the 1.3.x README.
Spring Integration Kafka is now based on the Spring for Apache Kafka project. It provides the following components:
- Outbound Channel Adapter
- Message-Driven Channel Adapter
These are discussed in the following sections.
The Outbound channel adapter is used to publish messages from a Spring Integration channel to Kafka topics. The channel is defined in the application context and then wired into the application that sends messages to Kafka. Sender applications can publish to Kafka via Spring Integration messages, which are internally converted to Kafka messages by the outbound channel adapter, as follows: the payload of the Spring Integration message will be used to populate the payload of the Kafka message, and (by default) the kafka_messageKey
header of the Spring Integration message will be used to populate the key of the Kafka message.
The target topic and partition for publishing the message can be customized through the kafka_topic
and kafka_partitionId
headers, respectively.
In addition, the <int-kafka:outbound-channel-adapter>
provides the ability to extract the key, target topic, and target partition by applying SpEL expressions on the outbound message. To that end, it supports the mutually exclusive pairs of attributes topic
/topic-expression
, message-key
/message-key-expression
, andpartition-id
/partition-id-expression
, to allow the specification of topic
,message-key
and partition-id
respectively as static values on the adapter, or to dynamically evaluate their values at runtime against the request message.
Important | |
---|---|
The |
NOTE : If the adapter is configured with a topic or message key (either with a constant or expression), those are used and the corresponding header is ignored. If you wish the header to override the configuration, you need to configure it in an expression, such as:
topic-expression="headers.topic != null ? headers.topic : 'myTopic'"
.
The adapter requires a KafkaTemplate
.
Here is an example of how the Kafka outbound channel adapter is configured with XML:
<int-kafka:outbound-channel-adapter id="kafkaOutboundChannelAdapter"
kafka-template="template"
auto-startup="false"
channel="inputToKafka"
topic="foo"
message-key-expression="'bar'"
partition-id-expression="2">
</int-kafka:outbound-channel-adapter>
<bean id="template" class="org.springframework.kafka.core.KafkaTemplate">
<constructor-arg>
<bean class="org.springframework.kafka.core.DefaultKafkaProducerFactory">
<constructor-arg>
<map>
<entry key="bootstrap.servers" value="localhost:9092" />
... <!-- more producer properties -->
</map>
</constructor-arg>
</bean>
</constructor-arg>
</bean>
As you can see, the adapter requires a KafkaTemplate
which, in turn, requires a suitably configured KafkaProducerFactory
.
When using Java Configuration:
@Bean @ServiceActivator(inputChannel = "toKafka") public MessageHandler handler() throws Exception { KafkaProducerMessageHandler<String, String> handler = new KafkaProducerMessageHandler<>(kafkaTemplate()); handler.setTopicExpression(new LiteralExpression("someTopic")); handler.setMessageKeyExpression(new LiteralExpression("someKey")); return handler; } @Bean public KafkaTemplate<String, String> kafkaTemplate() { return new KafkaTemplate<>(producerFactory()); } @Bean public ProducerFactory<String, String> producerFactory() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress); // set more properties return new DefaultKafkaProducerFactory<>(props); }
The KafkaMessageDrivenChannelAdapter
(<int-kafka:message-driven-channel-adapter>
) uses a spring-kafka
KafkaMessageListenerContainer
orConcurrentListenerContainer
.
An example of xml configuration variant is shown here:
<int-kafka:message-driven-channel-adapter
id="kafkaListener"
listener-container="container1"
auto-startup="false"
phase="100"
send-timeout="5000"
channel="nullChannel"
error-channel="errorChannel" />
<bean id="container1" class="org.springframework.kafka.listener.KafkaMessageListenerContainer">
<constructor-arg>
<bean class="org.springframework.kafka.core.DefaultKafkaConsumerFactory">
<constructor-arg>
<map>
<entry key="bootstrap.servers" value="localhost:9092" />
...
</map>
</constructor-arg>
</bean>
</constructor-arg>
<constructor-arg name="topics" value="foo" />
</bean>
When using Java Configuration:
@Bean public KafkaMessageDrivenChannelAdapter<String, String> adapter(KafkaMessageListenerContainer<String, String> container) { KafkaMessageDrivenChannelAdapter<String, String> kafkaMessageDrivenChannelAdapter = new KafkaMessageDrivenChannelAdapter<>(container); kafkaMessageDrivenChannelAdapter.setOutputChannel(received()); return kafkaMessageDrivenChannelAdapter; } @Bean public KafkaMessageListenerContainer<String, String> container() throws Exception { ContainerProperties properties = new ContainerProperties(this.topic); // set more properties return new KafkaMessageListenerContainer<>(consumerFactory(), properties); } @Bean public ConsumerFactory<String, String> consumerFactory() { Map<String, Object> props = new HashMap<>(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress); // set more properties return new DefaultKafkaConsumerFactory<>(props); }