• B


    The most exciting space discovery occurred at the end of the 20th century. In 1999, scientists traced down an ant-like creature in the planet Y1999 and called it M11. It has only one eye on the left side of its head and just three feet all on the right side of its body and suffers from three walking limitations:
    It can not turn right due to its special body structure.
    It leaves a red path while walking.
    It hates to pass over a previously red colored path, and never does that.

    The pictures transmitted by the Discovery space ship depicts that plants in the Y1999 grow in special points on the planet. Analysis of several thousands of the pictures have resulted in discovering a magic coordinate system governing the grow points of the plants. In this coordinate system with x and y axes, no two plants share the same x or y.
    An M11 needs to eat exactly one plant in each day to stay alive. When it eats one plant, it remains there for the rest of the day with no move. Next day, it looks for another plant to go there and eat it. If it can not reach any other plant it dies by the end of the day. Notice that it can reach a plant in any distance.
    The problem is to find a path for an M11 to let it live longest.
    Input is a set of (x, y) coordinates of plants. Suppose A with the coordinates (xA, yA) is the plant with the least y-coordinate. M11 starts from point (0,yA) heading towards plant A. Notice that the solution path should not cross itself and all of the turns should be counter-clockwise. Also note that the solution may visit more than two plants located on a same straight line.

    Input

    The first line of the input is M, the number of test cases to be solved (1 <= M <= 10). For each test case, the first line is N, the number of plants in that test case (1 <= N <= 50), followed by N lines for each plant data. Each plant data consists of three integers: the first number is the unique plant index (1..N), followed by two positive integers x and y representing the coordinates of the plant. Plants are sorted by the increasing order on their indices in the input file. Suppose that the values of coordinates are at most 100.

    Output

    Output should have one separate line for the solution of each test case. A solution is the number of plants on the solution path, followed by the indices of visiting plants in the path in the order of their visits.

    Sample Input

    2
    10
    1 4 5
    2 9 8
    3 5 9
    4 1 7
    5 3 2
    6 6 3
    7 10 10
    8 8 1
    9 2 4
    10 7 6
    14
    1 6 11
    2 11 9
    3 8 7
    4 12 8
    5 9 20
    6 3 2
    7 1 6
    8 2 13
    9 15 1
    10 14 17
    11 13 19
    12 5 18
    13 7 3
    14 10 16

    Sample Output

    10 8 7 3 4 9 5 6 2 1 10
    14 9 10 11 5 12 8 7 6 13 4 14 1 3 2

    凸包,从第一个开始不停的进行排序就好了;

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include <iomanip>
    #include<cmath>
    #include<float.h> 
    #include<string.h>
    #include<algorithm>
    #define sf scanf
    #define pf printf
    #define mm(x,b) memset((x),(b),sizeof(x))
    #include<vector>
    #include<queue>
    #include<stack>
    #include<map>
    #define rep(i,a,n) for (int i=a;i<n;i++)
    #define per(i,a,n) for (int i=a;i>=n;i--)
    typedef long long ll;
    typedef long double ld;
    typedef double db;
    const ll mod=1e9+100;
    const db e=exp(1);
    using namespace std;
    const double pi=acos(-1.0);
    const int INF=0xfffffff;
    struct Point{
        int x,y,temp,num;
    }p[50005],s[50005];
    int top;
    int direction(Point p1,Point p2,Point p3) { return (p3.x-p1.x)*(p2.y-p1.y)-(p2.x-p1.x)*(p3.y-p1.y); }//点2和3,按哪个和点一的角度更小排,相同的话按哪个更近排 
    double dis(Point p1,Point p2) { return sqrt((p2.x-p1.x)*(p2.x-p1.x)+(p2.y-p1.y)*(p2.y-p1.y)); }
    bool cmp(Point p1,Point p2)//极角排序 
    {
        int temp=direction(p[top],p1,p2);
        if(temp<0)return true ;
        if(temp==0&&dis(p[top],p1)<dis(p[top],p2))return true;
    	return false;
    }
    /*vector<int>v;
    void Graham(int n)
    {
        int pos,minx,miny;
        minx=miny=INF;
        for(int i=0;i<n;i++)//找最下面的基点
            if(p[i].y<miny||(p[i].y==miny&&p[i].x<minx))
            {
                minx=p[i].x;
                miny=p[i].y;
                pos=i;
            }
        swap(p[0],p[pos]);
        sort(p+1,p+n,cmp);
        p[n]=p[0];
        s[0]=p[0];s[1]=p[1];s[2]=p[2];
        p[0].temp=1;p[1].temp=1;p[2].temp=1;
        top=2;int i=3;
        while(top<n)
        {
        	while(p[i].temp) 
    		{
    			i++;
    			if(i==n) i=0;
    		}
        	
            while(direction(s[top-1],s[top],p[i])>=0&&top>=2)
    		{
    			p[s[top].num].temp=0;
    			top--;
    		}
            s[++top]=p[i];
            p[i].temp=1;
        }
    }*/
    int main()
    {
    	int re;
    	sf("%d",&re);
    	while(re--)
    	{
    		top=0;
    		int n;
    	cin>>n;
    	rep(i,0,n)
    	{
    		p[i].temp=0;sf("%d%d%d",&p[i].num,&p[i].x,&p[i].y);
    	}
    	int pos,minx,miny;
        minx=miny=INF;
        for(int i=0;i<n;i++)//找最下面的基点
            if(p[i].y<miny||(p[i].y==miny&&p[i].x<minx))
            {
                minx=p[i].x;
                miny=p[i].y;
                pos=i;
            }
        swap(p[0],p[pos]);
        pf("%d",n);
    	rep(i,1,n)
    	{
    		sort(p+i,p+n,cmp);top++;
    	}
    	rep(i,0,n)
    	pf(" %d",p[i].num);
    	pf("
    ");
    	}
    	return 0;
    }
    
  • 相关阅读:
    LDAP安装配置(windows)
    chrome postman插件手动安装
    mabatis insert into on duplicate key
    ZOJ 3641 <并查集+STL>
    ZOJ 3633 <rmq 重点在于转化>
    POJ 2817 状态DP 字符串找最多的重复
    POJ 2771 简单二分图匹配
    POJ 1149 最大流<建图> PIGS
    POJ 3692 二分图最大独立点集
    POJ 2239 简单的二分图求最大匹配
  • 原文地址:https://www.cnblogs.com/wzl19981116/p/9417852.html
Copyright © 2020-2023  润新知