OO’s Sequence
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 1751 Accepted Submission(s): 632
Problem Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy ai mod aj=0,now OO want to know
∑i=1n∑j=inf(i,j) mod (109+7).
Input
There are multiple test cases. Please process till EOF.
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
Output
For each tests: ouput a line contain a number ans.
Sample Input
5 1 2 3 4 5
Sample Output
23
Author
FZUACM
Source
Recommend
题意非常easy :求随意区间内满足条件的ai有多少个
假设依照题意 程序应该这样写:
四层循环 - - (不超时吃键盘)
尽管最后优化到 n^2/2也超时 数据太大了
#include<stdio.h> int main() { int n,i,j,k,kk,a[100050]; while(scanf("%d",&n)!=EOF) { for(i=1; i<=n; i++) scanf("%d",&a[i]); long long suma=0; for(i=1; i<=n; i++) { for(j=i; j<=n; j++) { for(k=i; k<=j; k++)//相当于i { int flag=0; for(kk=i; kk <= j ; kk++)//相当于j { if(a[k]%a[kk] == 0 && k!=kk) { flag=1; break; } } if(flag!=1) { suma++; suma%=100000007; } } printf("%d %d=%d %d=%d ",i,j,a[i],a[j],suma); } } printf("%I64d ",suma); } }脑洞大开:换个思路是不是题意求的是找那些区间能满足第ai个值存在呢?
也就是说看ai能提供几个答案
定义两个数组 l r 表示i数的左側和右側
最接近他的值且值是a[i]因子的数字的位置
那么第i个数字能提供的答案就是(r[i]-i) * (l[i]-i)
事实上这样的方法有漏洞 假设我给你 10w个1 程序就跪了 ╮(╯▽╰)╭ 没有这数据 所以放心大胆的做吧
最接近他的值且值是a[i]因子的数字的位置
那么第i个数字能提供的答案就是(r[i]-i) * (l[i]-i)
事实上这样的方法有漏洞 假设我给你 10w个1 程序就跪了 ╮(╯▽╰)╭ 没有这数据 所以放心大胆的做吧
#include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <math.h> using namespace std; const int M = 10e5 + 5; const long mod = 1e9+7; int vis[M],a[M],l[M],r[M]; int main() { int n; while(~scanf("%d",&n)) { memset(l,0,sizeof(l)); memset(r,0,sizeof(r)); memset(vis,0,sizeof(vis)); for(int i = 1;i <= n; ++i) { scanf("%d",&a[i]); r[i] = n+1; for(int j = a[i];j <= 10000; j+=a[i]) //找到离他近期的因子 { if(vis[j]) { r[vis[j]] = i; vis[j] = 0; } } vis[a[i]] = i; } memset(vis,0,sizeof(vis)); for(int i = n;i >= 1; --i) { for(int j = a[i];j <= 10000; j+=a[i]) { if(vis[j]) { l[vis[j]] = i; vis[j] = 0; } } vis[a[i]] = i; } long long ans = 0; for(int i = 1;i <= n; ++i) { ans = ((ans + (long long)(r[i]-i)*(long long)(i-l[i])%mod)%mod); } printf("%I64d ",ans); } }