题目大意:给定一个图的最短路,求原图中至少存在多少条边。
题解:利用 Floyd 的性质,枚举边 d[i][j],若存在一个不是两端点的点,使得 d[i][j]=d[i][k]+d[k][j] 成立,则证明 (i,j) 这条边可以没有。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=110;
int n,d[maxn][maxn];
int kase;
void read_and_parse(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&d[i][j]);
}
void solve(){
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(d[i][j]>d[i][k]+d[k][j])
return (void)printf("Case %d: impossible
",++kase);
int ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(i==j)continue;
bool is=1;
for(int k=1;k<=n;k++){
if(k!=i&&k!=j&&d[i][j]==d[i][k]+d[k][j]){
is=0;
break;
}
}
if(is)++ans;
}
printf("Case %d: %d
",++kase,ans);
}
int main(){
int T;scanf("%d",&T);
while(T--){
read_and_parse();
solve();
}
return 0;
}