• SR领域文献资源汇总(链接地址)


    DRCN http://www.drcn.org/   The International Workshop on Design of Reliable Communication Networks (DRCN) 

    2016年10月转: image super-resolution分类_DavFrank_新浪博客 http://blog.sina.com.cn/s/blog_82a927880102wbpx.html

     查DRCN时逛到的一个帖子,对最近的超分辨率问题整理得很全。

          转了一部分,但是从这里最后的​Quantitative comparisons可以看出,如果单从传统学习的角度,对于PSNR的提升,可能已经很难超越DL。当然有一些基于重建的方法可能会接近,但是时间消耗太大,只能学术玩玩。

          其实不只是超分辨率问题,涉及到CV的各个方面,很多最近几年都被DL打压的很厉害,是不是会出现DL一统江湖的情况?我想很难,最后的一个结果会是什么样让人期待。

    github:https://github.com/huangzehao/Super-Resolution.Benckmark

    1---Classical Sparse Coding Method

    ① ScSR [Web]
    • Image super-resolution as sparse representation of raw image patches (CVPR2008), Jianchao Yang et al.
    • Image super-resolution via sparse representation (TIP2010), Jianchao Yang et al.
    • Coupled dictionary training for image super-resolution (TIP2011), Jianchao Yang et al.

    杨建超-基于稀疏表达的图像超分辨重建-学习札记 - 简书 https://www.jianshu.com/p/96d968066b78?utm_campaign

    2---Anchored Neighborhood Regression Method

    • ① ANR [Web]
    • Anchored Neighborhood Regression for Fast Example-Based Super-Resolution (ICCV2013), Radu Timofte et al.
    • ② A+ [Web]
    • A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution (ACCV2014), Radu Timofte et al.
    • ③ IA [Web]
    • Seven ways to improve example-based single image super resolution (CVPR2016), Radu Timofte et al.

    Self-Exemplars

    • 3---SelfExSR [Web]
    ① Single Image Super-Resolution from Transformed Self-Exemplars (CVPR2015), Jia-Bin Huang et al.

    4---Bayes

    • ① NBSRF [Web]
    • Naive Bayes Super-Resolution Forest (ICCV2015), Jordi Salvador et al.

    5---Deep Learning Method

    • ①SRCNN [Web]
    • Image Super-Resolution Using Deep Convolutional Networks (ECCV2014), Chao Dong et al.
    • Image Super-Resolution Using Deep Convolutional Networks (TPAMI2015), Chao Dong et al.
    • ② CSCN [Web]
    • Deep Networks for Image Super-Resolution with Sparse Prior (ICCV2015), Zhaowen Wang et al.
    • Robust Single Image Super-Resolution via Deep Networks with Sparse Prior (TIP2016), Ding Liu et al.
    • ③ VDSR [Web]
    • Accurate Image Super-Resolution Using Very Deep Convolutional Networks (CVPR2016), Jiwon Kim et al.
    • ④ DRCN [Web]
    • Deeply-Recursive Convolutional Network for Image Super-Resolution (CVPR2016), Jiwon Kim et al.
    • ⑤ ESPCN [PDF]
    • Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR2016), Wenzhe Shi et al.
    • Is the deconvolution layer the same as a convolutional layer? [PDF]
    • ⑥ FSRCNN [Web]
    • Acclerating the Super-Resolution Convolutional Neural Network (ECCV2016), Dong Chao et al.

    6---Perceptual Loss

    • Perceptual Losses for Real-Time Style Transfer and Super-Resolution (ECCV2016), Justin Johnson et al.
    • SRGAN [PDF]
    • Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, Christian Ledig et al.
  • 相关阅读:
    Oracle 对比insert和delete操作产生的undo
    MySQL 详细解读undo log :insert undo,update undo
    什么是关系型数据库?
    Greenplum 常用数据库管理语句,sql工具
    Greenplum常用的gp_toolkit & pg_catalog监控语句
    Greenplum 与 PostgreSQL 修改元数据(catalog)的方法 allow_system_table_mods
    Greenplum 6 新功能 在线扩容工具GPExpand (转载)
    Pivotal Greenplum 6.0 新特性介绍
    数据库 Hash Join的定义,原理,算法,成本,模式和位图
    Mycat 全局系列号(转载)
  • 原文地址:https://www.cnblogs.com/wxl845235800/p/7705298.html
Copyright © 2020-2023  润新知