[BZOJ3155] Preprefix sum
Description
Input
第一行给出两个整数N,M。分别表示序列长度和操作个数接下来一行有N个数,即给定的序列a1,a2,....an接下来M行,每行对应一个操作,格式见题目描述
Output
对于每个询问操作,输出一行,表示所询问的SSi的值。
Sample Input
5 3
1 2 3 4 5
Query 5
Modify 3 2
Query 5
Sample Output
35
32
试题分析
题目要求:$$sum_{i=1}^{n} sum_{j=1}^{i} a_j$$。
转化一下可以变成:$$n imes sum_{i=1}^{n} a_i - sum_{i=1}{n}sum_{j=i+1}{n} a_i$$
然后这个式子就可以两个树状数组维护了。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define LL long long
inline LL read(){
LL x=0,f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const LL INF = 2147483600;
const LL MAXN = 101000;
LL N,M; LL c[2][MAXN+1],a[MAXN+1];
char str[MAXN+1];
inline LL lowbit(LL x){return x&(-x);}
inline LL Query(LL t,LL x){
LL res=0;
while(x) res+=c[t][x],x-=lowbit(x); return res;
}
inline void Add(LL t,LL x,LL k){
while(x<=N) c[t][x]+=k,x+=lowbit(x); return ;
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
N=read(),M=read();
for(LL i=1;i<=N;i++) a[i]=read(),Add(0,i,(1-i)*a[i]),Add(1,i,a[i]);
while(M--){
scanf("%s",str);
if(str[0]=='Q'){
LL n=read();
printf("%lld
",1LL*n*Query(1,n)+Query(0,n));
}
else{
LL n=read(),x=read();
Add(0,n,(1-n)*(x-a[n])); Add(1,n,x-a[n]);
a[n]=x;
}
}
return 0;
}