• 二叉排序树算法实例


    1.#include <stdio.h>
    #include <stdlib.h>
    #include "BSTree.h"

    /*  二叉树排序算法  */

    struct Node
    {
        BSTreeNode header;
        char v;
    };

    void printf_data(BSTreeNode* node)
    {
        if( node != NULL )
        {
            printf("%c", ((struct Node*)node)->v);
        }
    }

    int compare_key(BSKey* k1, BSKey* k2)
    {
        return (int)k1 - (int)k2;
    }

    int main(int argc, char *argv[])
    {
        BSTree* tree = BSTree_Create();
        
        struct Node n1 = {{(BSKey*)1, NULL, NULL}, 'A'};
        struct Node n2 = {{(BSKey*)2, NULL, NULL}, 'B'};
        struct Node n3 = {{(BSKey*)3, NULL, NULL}, 'C'};
        struct Node n4 = {{(BSKey*)4, NULL, NULL}, 'D'};
        struct Node n5 = {{(BSKey*)5, NULL, NULL}, 'E'};
        struct Node n6 = {{(BSKey*)6, NULL, NULL}, 'F'};
        
        BSTree_Insert(tree, (BSTreeNode*)&n4, compare_key);
        BSTree_Insert(tree, (BSTreeNode*)&n1, compare_key);
        BSTree_Insert(tree, (BSTreeNode*)&n3, compare_key);
        BSTree_Insert(tree, (BSTreeNode*)&n6, compare_key);
        BSTree_Insert(tree, (BSTreeNode*)&n2, compare_key);
        BSTree_Insert(tree, (BSTreeNode*)&n5, compare_key);
        
        printf("Height: %d ", BSTree_Height(tree));
        printf("Degree: %d ", BSTree_Degree(tree));
        printf("Count: %d ", BSTree_Count(tree));
        printf("Search Key 5: %c ", ((struct Node*)BSTree_Get(tree, (BSKey*)5, compare_key))->v);
        printf("Full Tree: ");
        
        BSTree_Display(tree, printf_data, 4, '-');
        
        BSTree_Delete(tree, (BSKey*)4, compare_key);
        
        printf("After Delete Key 4: ");
        printf("Height: %d ", BSTree_Height(tree));
        printf("Degree: %d ", BSTree_Degree(tree));
        printf("Count: %d ", BSTree_Count(tree));
        printf("Full Tree: ");
        
        BSTree_Display(tree, printf_data, 4, '-');
        
        BSTree_Clear(tree);
        
        printf("After Clear: ");
        printf("Height: %d ", BSTree_Height(tree));
        printf("Degree: %d ", BSTree_Degree(tree));
        printf("Count: %d ", BSTree_Count(tree));
        
        BSTree_Display(tree, printf_data, 4, '-');
        
        BSTree_Destroy(tree);
        
        return 0;
    }

    2.#ifndef _BSTREE_H_
    #define _BSTREE_H_

    typedef void BSTree;    
    typedef void BSKey;        //关键字的类型

    typedef struct _tag_BSTreeNode BSTreeNode;
    /*  二叉排序来源于二分查找  */
    struct _tag_BSTreeNode
    {
        BSKey* key;            //关键字
        BSTreeNode* left;
        BSTreeNode* right;
    };

    typedef void (BSTree_Printf)(BSTreeNode*);
    //定义一个比较函数
    typedef int (BSTree_Compare)(BSKey*, BSKey*);

    BSTree* BSTree_Create();

    void BSTree_Destroy(BSTree* tree);

    void BSTree_Clear(BSTree* tree);
    //compare-->通过比较插入;BSTree_Compare函数比较指针;
    int BSTree_Insert(BSTree* tree, BSTreeNode* node, BSTree_Compare* compare);

    BSTreeNode* BSTree_Delete(BSTree* tree, BSKey* key, BSTree_Compare* compare);

    BSTreeNode* BSTree_Get(BSTree* tree, BSKey* key, BSTree_Compare* compare);

    BSTreeNode* BSTree_Root(BSTree* tree);

    int BSTree_Height(BSTree* tree);

    int BSTree_Count(BSTree* tree);

    int BSTree_Degree(BSTree* tree);

    void BSTree_Display(BSTree* tree, BSTree_Printf* pFunc, int gap, char div);

    #endif

    3.#include <stdio.h>
    #include <malloc.h>
    #include "BSTree.h"

    typedef struct _tag_BSTree TBSTree;
    struct _tag_BSTree
    {
        int count;
        BSTreeNode* root;
    };
    //递归显示
    static void recursive_display(BSTreeNode* node, BSTree_Printf* pFunc, int format, int gap, char div) // O(n)
    {
        int i = 0;
        
        if( (node != NULL) && (pFunc != NULL) )
        {
            for(i=0; i<format; i++)
            {
                printf("%c", div);
            }
            
            pFunc(node);
            
            printf(" ");
            
            if( (node->left != NULL) || (node->right != NULL) )
            {
                recursive_display(node->left, pFunc, format + gap, gap, div);
                recursive_display(node->right, pFunc, format + gap, gap, div);
            }
        }
        else
        {
            for(i=0; i<format; i++)
            {
                printf("%c", div);
            }
            printf(" ");
        }
    }
    //节点数
    static int recursive_count(BSTreeNode* root) // O(n)
    {
        int ret = 0;
        
        if( root != NULL )
        {
            ret = recursive_count(root->left) + 1 + recursive_count(root->right);
        }
        
        return ret;
    }
    //高度
    static int recursive_height(BSTreeNode* root) // O(n)
    {
        int ret = 0;
        
        if( root != NULL )
        {
            int lh = recursive_height(root->left);
            int rh = recursive_height(root->right);
            
            ret = ((lh > rh) ? lh : rh) + 1;
        }
        
        return ret;
    }
    //递归度
    static int recursive_degree(BSTreeNode* root) // O(n)
    {
        int ret = 0;
        
        if( root != NULL )
        {
            if( root->left != NULL )
            {
                ret++;
            }
            
            if( root->right != NULL )
            {
                ret++;
            }
            
            if( ret == 1 )
            {
                int ld = recursive_degree(root->left);
                int rd = recursive_degree(root->right);
                
                if( ret < ld )
                {
                    ret = ld;
                }
                
                if( ret < rd )
                {
                    ret = rd;
                }
            }
        }
        
        return ret;
    }
    //insert  
    static int recursive_insert(BSTreeNode* root, BSTreeNode* node, BSTree_Compare* compare)
    {
        int ret = 1;
        //先进行比较
        int r = compare(node->key, root->key);
        
        if( r == 0 )
        {
            ret = 0;
        }
        //左节点
        else if( r < 0 )
        {
            if( root->left != NULL )
            {
                ret = recursive_insert(root->left, node, compare);
            }
            else
            {
                root->left = node;
            }
        }
        //右节点
        else if( r > 0 )
        {
            if( root->right != NULL )
            {
                ret = recursive_insert(root->right, node, compare);
            }
            else
            {
                root->right = node;
            }
        }
    }
    //递归查询
    static BSTreeNode* recursive_get(BSTreeNode* root, BSKey* key, BSTree_Compare* compare)
    {
        BSTreeNode* ret = NULL;
        
        if( root != NULL )
        {
            int r = compare(key, root->key);
            
            if( r == 0 )
            {
                ret = root;
            }
          //左查找
            else if( r < 0 )
            {
                ret = recursive_get(root->left, key, compare);
            }
          //右查找
            else if( r > 0 )
            {
                ret = recursive_get(root->right, key, compare);
            }
        }
        
        return ret;
    }
    //delete 节点
    static BSTreeNode* delete_node(BSTreeNode** pRoot)
    {
        BSTreeNode* ret = *pRoot;
        //判断是否在左右子树  三种情况 -->仅左右孩子  有两个孩子
        if( (*pRoot)->right == NULL )
        {
            *pRoot = (*pRoot)->left;
        }
        else if( (*pRoot)->left == NULL )
        {
            *pRoot = (*pRoot)->right;
        }
        else
        {
        //子树的子树
            BSTreeNode* g = *pRoot;
            BSTreeNode* c = (*pRoot)->left;
            
            while( c->right != NULL )
            {
                g = c;
                c = c->right;
            }
            
            if( g != *pRoot )
            {
                g->right = c->left;
            }
            else
            {
                g->left = c->left;
            }
          //
            c->left = (*pRoot)->left;
            c->right = (*pRoot)->right;
            
            *pRoot = c;
        }
        
        return ret;
    }
    //删除 之后还是一颗二叉树 pRoot指向指针指针
    static BSTreeNode* recursive_delete(BSTreeNode** pRoot, BSKey* key, BSTree_Compare* compare)
    {
        BSTreeNode* ret = NULL;
        //*pRoot根节点
        if( (pRoot != NULL) && (*pRoot != NULL) )
        {
          //首先根据根节点进行比较
            int r = compare(key, (*pRoot)->key);
            //删除根节点
            if( r == 0 )
            {
                ret = delete_node(pRoot);
            }
          //不然有左边子树
            else if( r < 0 )
            {
                ret = recursive_delete(&((*pRoot)->left), key, compare);
            }
          //否则
            else if( r > 0 )
            {
                ret = recursive_delete(&((*pRoot)->right), key, compare);
            }
        }
        
        return ret;
    }
    //创建一颗二叉树
    BSTree* BSTree_Create() // O(1)
    {
        TBSTree* ret = (TBSTree*)malloc(sizeof(TBSTree));
        
        if( ret != NULL )
        {
            ret->count = 0;
            ret->root = NULL;
        }
        
        return ret;
    }
    //销毁二叉树
    void BSTree_Destroy(BSTree* tree) // O(1)
    {
        free(tree);
    }
    //清除二叉树
    void BSTree_Clear(BSTree* tree) // O(1)
    {
        TBSTree* btree = (TBSTree*)tree;
        
        if( btree != NULL )
        {
            btree->count = 0;
            btree->root = NULL;
        }
    }
    //根据节点插入
    int BSTree_Insert(BSTree* tree, BSTreeNode* node, BSTree_Compare* compare)
    {
        TBSTree* btree = (TBSTree*)tree;
        int ret = (btree != NULL) && (node != NULL) && (compare != NULL);
        
        if( ret )
        {
            node->left = NULL;
            node->right = NULL;
            
            if( btree->root == NULL )
            {
                btree->root = node;  
            }
            else
            {
                ret = recursive_insert(btree->root, node, compare);
            }
            
            if( ret )
            {
                btree->count++;
            }
        }
        
        return ret;
    }
    //通过关键字删除元素
    BSTreeNode* BSTree_Delete(BSTree* tree, BSKey* key, BSTree_Compare* compare)
    {
        TBSTree* btree = (TBSTree*)tree;
        BSTreeNode* ret = NULL;
        
        if( (btree != NULL) && (key != NULL) && (compare != NULL) )
        {
            ret = recursive_delete(&btree->root, key, compare);
            
            if( ret != NULL )
            {
                btree->count--;
            }
        }
        
        return ret;
    }

    BSTreeNode* BSTree_Get(BSTree* tree, BSKey* key, BSTree_Compare* compare)
    {
        TBSTree* btree = (TBSTree*)tree;
        BSTreeNode* ret = NULL;
        
        if( (btree != NULL) && (key != NULL) && (compare != NULL) )
        {
            ret = recursive_get(btree->root, key, compare);
        }
        
        return ret;
    }

    BSTreeNode* BSTree_Root(BSTree* tree) // O(1)
    {
        TBSTree* btree = (TBSTree*)tree;
        BSTreeNode* ret = NULL;
        
        if( btree != NULL )
        {
            ret = btree->root;
        }
        
        return ret;
    }

    int BSTree_Height(BSTree* tree) // O(n)
    {
        TBSTree* btree = (TBSTree*)tree;
        int ret = 0;
        
        if( btree != NULL )
        {
            ret = recursive_height(btree->root);
        }
        
        return ret;
    }

    int BSTree_Count(BSTree* tree) // O(1)
    {
        TBSTree* btree = (TBSTree*)tree;
        int ret = 0;
        
        if( btree != NULL )
        {
            ret = btree->count;
        }
        
        return ret;
    }

    int BSTree_Degree(BSTree* tree) // O(n)
    {
        TBSTree* btree = (TBSTree*)tree;
        int ret = 0;
        
        if( btree != NULL )
        {
            ret = recursive_degree(btree->root);
        }
        
        return ret;
    }

    void BSTree_Display(BSTree* tree, BSTree_Printf* pFunc, int gap, char div) // O(n)
    {
        TBSTree* btree = (TBSTree*)tree;
        
        if( btree != NULL )
        {
            recursive_display(btree->root, pFunc, 0, gap, div);
        }
    }

  • 相关阅读:
    (转)mtr命令详解诊断网络路由
    WinDbg使用介绍
    windbg-bp、 bm、 bu、 bl、 bc、 ba(断点、硬件断点)
    【转】25.windbg-!gle、g(错误码、g系列)
    umdh windbg分析内存泄露
    windbg !logexts(自带的监控API)
    windbg cs
    windbg dds、dps、dqs
    Windbg找出memory leak的一种笨办法
    【转】windows平台多线程同步之Mutex的应用
  • 原文地址:https://www.cnblogs.com/wxb20/p/6197071.html
Copyright © 2020-2023  润新知