• pytorch0.4版的CNN对minist分类


    卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的。

    卷积神经网络CNN的结构一般包含这几个层:

    1. 输入层:用于数据的输入
    2. 卷积层:使用卷积核进行特征提取和特征映射
    3. 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射
    4. 池化层:进行下采样,对特征图稀疏处理,减少数据运算量。
    5. 全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失
    6. 输出层:用于输出结果

    用pytorch0.4 做的cnn网络做的minist 分类,代码如下:

     1 import torch
     2 import torch.nn as nn
     3 import torch.nn.functional as F
     4 import torch.optim as optim
     5 from torchvision import datasets, transforms
     6 from torch.autograd import Variable
     7 
     8 # Training settings
     9 batch_size = 64
    10 
    11 # MNIST Dataset
    12 train_dataset = datasets.MNIST(root='./data/',train=True,transform=transforms.ToTensor(),download=True)
    13 test_dataset = datasets.MNIST(root='./data/',train=False,transform=transforms.ToTensor())
    14 
    15 # Data Loader (Input Pipeline)
    16 train_loader = torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
    17 test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False)
    18 
    19 class Net(nn.Module):
    20     def __init__(self):
    21         super(Net, self).__init__()
    22         # 输入1通道,输出10通道,kernel 5*5
    23         self.conv1 = nn.Conv2d(1, 10, kernel_size=5) # 定义conv1函数的是图像卷积函数:输入为图像(1个频道,即灰度图),输出为 10张特征图, 卷积核为5x5正方形
    24         self.conv2 = nn.Conv2d(10, 20, kernel_size=5) # # 定义conv2函数的是图像卷积函数:输入为10张特征图,输出为20张特征图, 卷积核为5x5正方形
    25         self.mp = nn.MaxPool2d(2)
    26         # fully connect
    27         self.fc = nn.Linear(320, 10)
    28 
    29     def forward(self, x):
    30         # in_size = 64
    31         in_size = x.size(0)  # one batch
    32         # x: 64*10*12*12
    33         x = F.relu(self.mp(self.conv1(x)))
    34         # x: 64*20*4*4
    35         x = F.relu(self.mp(self.conv2(x)))
    36         # x: 64*320
    37         x = x.view(in_size, -1)  # flatten the tensor
    38         # x: 64*10
    39         x = self.fc(x)
    40         return F.log_softmax(x,dim=0)
    41 
    42 
    43 model = Net()
    44 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
    45 
    46 def train(epoch):
    47     for batch_idx, (data, target) in enumerate(train_loader):
    48         data, target = Variable(data), Variable(target)
    49         optimizer.zero_grad()
    50         output = model(data)
    51         loss = F.nll_loss(output, target)
    52         loss.backward()
    53         optimizer.step()
    54         if batch_idx % 200 == 0:
    55             print('Train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
    56                 epoch, batch_idx * len(data), len(train_loader.dataset),
    57                        100. * batch_idx / len(train_loader), loss.item()))
    58 
    59 
    60 def test():
    61     test_loss = 0
    62     correct = 0
    63     for data, target in test_loader:
    64         data, target = Variable(data), Variable(target)
    65         output = model(data)
    66         # sum up batch loss
    67         #test_loss += F.nll_loss(output, target, size_average=False).item()
    68         test_loss += F.nll_loss(output, target, reduction = 'sum').item()
    69         # get the index of the max log-probability
    70         pred = output.data.max(1, keepdim=True)[1]
    71         correct += pred.eq(target.data.view_as(pred)).cpu().sum()
    72 
    73     test_loss /= len(test_loader.dataset)
    74     print('
    Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)
    '.format(
    75         test_loss, correct, len(test_loader.dataset),
    76         100. * correct / len(test_loader.dataset)))
    77 
    78 
    79 if __name__=="__main__":
    80     for epoch in range(1, 4):
    81       train(epoch)
    82       test()

     运行效果如下:

    Train Epoch: 1 [0/60000 (0%)]    Loss: 4.163342
    Train Epoch: 1 [12800/60000 (21%)]    Loss: 2.689871
    Train Epoch: 1 [25600/60000 (43%)]    Loss: 2.553686
    Train Epoch: 1 [38400/60000 (64%)]    Loss: 2.376630
    Train Epoch: 1 [51200/60000 (85%)]    Loss: 2.321894
    
    Test set: Average loss: 2.2703, Accuracy: 9490/10000 (94%)
    
    Train Epoch: 2 [0/60000 (0%)]    Loss: 2.321601
    Train Epoch: 2 [12800/60000 (21%)]    Loss: 2.293680
    Train Epoch: 2 [25600/60000 (43%)]    Loss: 2.377935
    Train Epoch: 2 [38400/60000 (64%)]    Loss: 2.150829
    Train Epoch: 2 [51200/60000 (85%)]    Loss: 2.201805
    
    Test set: Average loss: 2.1848, Accuracy: 9658/10000 (96%)
    
    Train Epoch: 3 [0/60000 (0%)]    Loss: 2.238524
    Train Epoch: 3 [12800/60000 (21%)]    Loss: 2.224833
    Train Epoch: 3 [25600/60000 (43%)]    Loss: 2.240626
    Train Epoch: 3 [38400/60000 (64%)]    Loss: 2.217183
    Train Epoch: 3 [51200/60000 (85%)]    Loss: 2.357141
    
    Test set: Average loss: 2.1426, Accuracy: 9723/10000 (97%)
  • 相关阅读:
    学生宿舍水电管理系统 产品需求评审(用户故事)
    nyoj 14-会场安排问题 (贪心)
    好看的鼠标hover效果
    JavaScript-三种弹窗方式
    博客园美化夜间模式
    js写个小时钟
    js获取时间,循环执行任务,延迟执行任务
    Bzoj1103 [POI2007]大都市meg
    POJ2155 Matrix
    POJ3625 Building Roads
  • 原文地址:https://www.cnblogs.com/www-caiyin-com/p/9955779.html
Copyright © 2020-2023  润新知