首先由于不会有三条对角线交于一点,所以过某一个交点有且只能有2条对角线
而这两条对角线实质上是确定了4个顶点(也可以看做是一个四边形的两条对角线交于一点,求四边形的数量)。
因此我们只需要确定4个顶点就得到了这个唯一确定的交点。
因此我们只需要求这样4个顶点的搭配有多少个了
也就是从n个顶点中取4个出来。
根据组合数的公式,(如果你不知道组合数的公式可以这么推:第一次取可以n个点都是可以取的,第二次取的时候第一个取的点就不能取了,所以只能取(n-1)种,以此类推)
由于改变四个点的顺序不会改变对角线,因此是求的组合而不是排列,也就要除以4!,也就是24
于是我们就得到了公式: n (n-1) (n-2) * (n-3) / 24
同时为了防止爆掉,但又不想写高精,
我们可以采用一种化简的技巧
于是原式可以化为:
n (n-1) / 2 (n-2) / 3 * (n-3) / 4
那为什么这样一定是对的呢?难道不会因为除不尽却向下取整而导致错误吗?
事实上是一定除得尽的
首先n和n-1一定有一个是2的倍数,因此2可以除尽,
同理n,n-1,n-2中一定有一个是3的倍数,因此3可以除尽(除掉2只会消除因数2而对3没有影响)
同理4也可以除尽
完\(^o^)/~
1 #include<bits/stdc++.h> 2 using namespace std; 3 unsigned long long n,ans; 4 int main() 5 { 6 scanf("%lld",&n); 7 ans=n * (n-1) / 2 * (n-2) / 3 * (n-3) / 4; 8 printf("%lld ",ans); 9 return 0; 10 }