• Kibana:使用 Elasticsearch 和 Kibana 进行动态数据


    现在你已经了解了基础知识,让我们尝试使用一些随机生成的 Elasticsearch 数据创建基于时间的折线图。 这与你在 Kibana 中创建新的 Vega 图时最初看到的内容相似,不同之处在于,我们将使用 Vega 语言而不是 Vega-Lite 的 Kibana 默认值(Vega的简化高级版本)。
    创建随机的 Logstash 日志数据

    如果你还不知道如何生成这些随机的数据,请参阅我之前的文章 “Logstash:运用 makelogs 创建测试日志”。我们使用如下的命令来生成20000个数据。我们首先为我们刚才生成的一个叫做 logstash-0 的索引创建一个 index pattern:

    这样我们就生产了我们想要的 index pattern。

    我们可以做一些简单的查询,比如:

    GET logstash-0/_search
    {
      "size": 5,
      "_source": ["@timestamp", "extension"]
    }

    我们可以看到有一个timestamp 及文件的扩展名类型 extension。请注意上面的 hits.hits。这个也是我们在下面想要用到的。
    运用 Vega 来展示数据

    在上面的 Vega 实验中,我们对 values 数据进行硬编码,而不是使用 url 进行实际查询。 这样,我们可以继续在不支持 Kibana Elasticsearch 查询的 Vega 编辑器中进行测试。 如果你将值替换为url部分,则该图将在 Kibana 内部变得完全动态,如下所示。

    {
     "$schema": "https://vega/github.io/schema/vega-lite/v2.json",
      data:  {
       "url": {
          "index": "logstash-*",
          "body": {
            "size": 100,
            "_source": ["@timestamp", "extension"]
          }
        }
        "format":{"property":"hits.hits"}
      },
      "transform": [
        {
          "calculate": "toDate(datum._source['@timestamp'])", "as": "time"
        },
        {
          "calculate": "datum._source.extension", "as": "ext"
        }
      ],
      "mark": "circle",
      "encoding": {
      }
    }

    在上面,我们替换之前 values 的硬编码,取而代之的是查询 logstash-* 索引。我们先查询 100 个数据,同时,我们只对 hits.hits 的内容感兴趣。另外我们通过 transform 把@timestamp 转换为 time,extension 转换为 ext。运行 Vega:

    上面显示的是一个点,这是因为我们还没对 x 及 y 轴做任何的设置。

    我们可以在浏览器中的 Developer Tools 里进行查看:

    接下来我们配置 x 及 y 轴:

    {
     "$schema": "https://vega/github.io/schema/vega-lite/v2.json",
      data:  {
       "url": {
          "index": "logstash-*",
          "body": {
            "size": 100,
            "_source": ["@timestamp", "extension"]
          }
        }
        "format":{"property":"hits.hits"}
      },
      "transform": [
        {
          "calculate": "toDate(datum._source['@timestamp'])", "as": "time"
        },
        {
          "calculate": "datum._source.extension", "as": "ext"
        }
      ],
      "mark": "circle",
      "encoding": {
         x: { field: "time", type: "temporal" }
         y: { field: "ext", type: "nominal" }
      }
    }

    就像我们上面的那样,我们可以添加颜色及形状:

    {
     "$schema": "https://vega/github.io/schema/vega-lite/v2.json",
      data:  {
       "url": {
          "index": "logstash-*",
          "body": {
            "size": 100,
            "_source": ["@timestamp", "extension"]
          }
        }
        "format":{"property":"hits.hits"}
      },
      "transform": [
        {
          "calculate": "toDate(datum._source['@timestamp'])", "as": "time"
        },
        {
          "calculate": "datum._source.extension", "as": "ext"
        }
      ],
      "mark": "point",
      "encoding": {
         x: { field: "time", type: "temporal" }
         y: { field: "ext", type: "nominal" }
         color: {field: "ext", type: "nominal"}
         shape: {field: "ext", type: "nominal" }
      }
    }

    目前我们的数据还不能和 search field 相关联,比如我们搜索 extension:css,但是我们的显示的图还是不会变好。另外,当我们选择右上角的时间选择时,我们的也不会变化。为了能关联起来,我们添加如下的两个字段到 url 中:

          "%context%": true,
          "%timefield%": "@timestamp",
    {
     "$schema": "https://vega/github.io/schema/vega-lite/v2.json",
      data:  {
       "url": {
          "%context%": true,
          "%timefield%": "@timestamp",
          "index": "logstash-*",
          "body": {
            "size": 100,
            "_source": ["@timestamp", "extension"]
          }
        }
        "format":{"property":"hits.hits"}
      },
      "transform": [
        {
          "calculate": "toDate(datum._source['@timestamp'])", "as": "time"
        },
        {
          "calculate": "datum._source.extension", "as": "ext"
        }
      ],
      "mark": "point",
      "encoding": {
         x: { field: "time", type: "temporal" }
         y: { field: "ext", type: "nominal" }
         color: {field: "ext", type: "nominal"}
         shape: {field: "ext", type: "nominal" }
      }
    }

    通过上面的关联,我们可以看出来,我们少了很多的数据,通过搜索 extension:css。

    我们发现 x 轴的 time 是没有啥用处。我们可以去掉它。我们同时旋转时间的标签30度:

    {
     "$schema": "https://vega/github.io/schema/vega-lite/v2.json",
      data:  {
       "url": {
          "%context%": true,
          "%timefield%": "@timestamp",
          "index": "logstash-*",
          "body": {
            "size": 100,
            "_source": ["@timestamp", "extension"]
          }
        }
        "format":{"property":"hits.hits"}
      },
      "transform": [
        {
          "calculate": "toDate(datum._source['@timestamp'])", "as": "time"
        },
        {
          "calculate": "datum._source.extension", "as": "ext"
        }
      ],
      "mark": "point",
      "encoding": {
         x: { field: "time", type: "temporal", axis: {title: null, labelAngle:30 }}
         y: { field: "ext", type: "nominal" }
         color: {field: "ext", type: "nominal"}
         shape: {field: "ext", type: "nominal" }
      }
    }

    接下来,我们尝试使用更多的数据,并使用 Elasticsearch 所提供的强大的 aggregation 功能。首先我们在 Kibana 中做如下的搜索:

    GET logstash-0/_search
    {
      "size": 0,
      "aggs": {
        "table": {
          "composite": {
            "size": 10000, 
            "sources": [
              {
                "time": {
                  "date_histogram": {
                    "field": "@timestamp",
                    "calendar_interval": "1d"
                  }
                }
              },
              {
                "ext": {
                  "terms": {
                    "field": "extension.keyword"
                  }
                }
              }
            ]
          }
        }
      }
    }

    它显示的结果为:

    {
      "took" : 6,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 10000,
          "relation" : "gte"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "table" : {
          "after_key" : {
            "time" : 1591920000000,
            "ext" : "jpg"
          },
          "buckets" : [
            {
              "key" : {
                "time" : 1591574400000,
                "ext" : "css"
              },
              "doc_count" : 159
            },
            {
              "key" : {
                "time" : 1591574400000,
                "ext" : "gif"
              },
              "doc_count" : 71
            },
            {
              "key" : {
                "time" : 1591574400000,
                "ext" : "jpg"
              },
              "doc_count" : 592
            },
            {
              "key" : {
                "time" : 1591574400000,
                "ext" : "php"
              },
              "doc_count" : 25
            },
            {
              "key" : {
                "time" : 1591574400000,
                "ext" : "png"
              },
              "doc_count" : 80
            },
            {
              "key" : {
                "time" : 1591660800000,
                "ext" : "css"
              },
              "doc_count" : 1043
            },
            {
              "key" : {
                "time" : 1591660800000,
                "ext" : "gif"
              },
              "doc_count" : 458
            },
            {
              "key" : {
                "time" : 1591660800000,
                "ext" : "jpg"
              },
              "doc_count" : 4365
            },
            {
              "key" : {
                "time" : 1591660800000,
                "ext" : "php"
              },
              "doc_count" : 234
            },
            {
              "key" : {
                "time" : 1591660800000,
                "ext" : "png"
              },
              "doc_count" : 598
            },
            {
              "key" : {
                "time" : 1591747200000,
                "ext" : "css"
              },
              "doc_count" : 1048
            },
            {
              "key" : {
                "time" : 1591747200000,
                "ext" : "gif"
              },
              "doc_count" : 427
            },
            {
              "key" : {
                "time" : 1591747200000,
                "ext" : "jpg"
              },
              "doc_count" : 4301
            },
            {
              "key" : {
                "time" : 1591747200000,
                "ext" : "php"
              },
              "doc_count" : 199
            },
            {
              "key" : {
                "time" : 1591747200000,
                "ext" : "png"
              },
              "doc_count" : 639
            },
            {
              "key" : {
                "time" : 1591833600000,
                "ext" : "css"
              },
              "doc_count" : 936
            },
            {
              "key" : {
                "time" : 1591833600000,
                "ext" : "gif"
              },
              "doc_count" : 340
            },
            {
              "key" : {
                "time" : 1591833600000,
                "ext" : "jpg"
              },
              "doc_count" : 3715
            },
            {
              "key" : {
                "time" : 1591833600000,
                "ext" : "php"
              },
              "doc_count" : 192
            },
            {
              "key" : {
                "time" : 1591833600000,
                "ext" : "png"
              },
              "doc_count" : 579
            },
            {
              "key" : {
                "time" : 1591920000000,
                "ext" : "jpg"
              },
              "doc_count" : 6
            }
          ]
        }
      }
    }

    请注意上面的数据结构,在接下来的 Vega 中将被采用。

    重新书写我们的 Vega:

    {
     "$schema": "https://vega/github.io/schema/vega-lite/v2.json",
      data:  {
       "url": {
          "%context%": true,
          "%timefield%": "@timestamp",
          "index": "logstash-*",
          "body": {
            "size": 0,
            "aggs": {
              "table": {
                "composite": {
                  "size": 10000, 
                  "sources": [
                    {
                      "time": {
                        "date_histogram": {
                          "field": "@timestamp",
                          "interval": {%autointerval%:400}
                        }
                      }
                    },
                    {
                      "ext": {
                        "terms": {
                          "field": "extension.keyword"
                        }
                      }
                    }
                  ]
                }
              }
            }
          }
        }
        "format":{"property":"aggregations.table.buckets"}
      },
      "transform": [
        {
          "calculate": "toDate(datum.key.time)", "as": "time"
        },
        {
          "calculate": "datum.key.ext", "as": "ext"
        }
      ],
      "mark": "area",
      "encoding": {
         x: { 
           field: "time", 
           type: "temporal"
         },
         y: {
           axis: {title: "Document count"}
           field: "doc_count", 
           type: "quantitative" 
        }
        color: {field: "ext", type: "nominal"}
      }
    }

    请注意上面的有些地方已经根据 aggregation 的结果做了相应的调整。展示的结果是:

    最后,我们取消 x 轴上的 time,并且,我们把所有的数据都 stack 起来:

    {
     "$schema": "https://vega/github.io/schema/vega-lite/v2.json",
      data:  {
       "url": {
          "%context%": true,
          "%timefield%": "@timestamp",
          "index": "logstash-*",
          "body": {
            "size": 0,
            "aggs": {
              "table": {
                "composite": {
                  "size": 10000, 
                  "sources": [
                    {
                      "time": {
                        "date_histogram": {
                          "field": "@timestamp",
                          "interval": {%autointerval%:400}
                        }
                      }
                    },
                    {
                      "ext": {
                        "terms": {
                          "field": "extension.keyword"
                        }
                      }
                    }
                  ]
                }
              }
            }
          }
        }
        "format":{"property":"aggregations.table.buckets"}
      },
      "transform": [
        {
          "calculate": "toDate(datum.key.time)", "as": "time"
        },
        {
          "calculate": "datum.key.ext", "as": "ext"
        }
      ],
      "mark": "area",
      "encoding": {
         x: { 
           field: "time", 
           type: "temporal",
           axis: {title: null}
         },
         y: {
           axis: {title: "Document count"},
           field: "doc_count", 
           type: "quantitative" ,
           stack: normalize
        }
        color: {field: "ext", type: "nominal"}
      }
    }

    我们是使用 makelogs 生成的数据。它生成的数据是在一天内的,并且是平均的。从上面,我们可以看出来各个文件的比例。

    好了。今天的文章就写到这里。希望大家也学到了一些东西。

    更多资料:

    【1】https://vega.github.io/vega-lite/tutorials/getting_started.html

    【2】https://www.elastic.co/blog/getting-started-with-vega-visualizations-in-kibana

    【3】 https://www.elastic.co/guide/en/kibana/master/vega-graph.html

    【4】https://vega.github.io/vega/examples/

    【5】https://vega.github.io/vega-lite/examples/

  • 相关阅读:
    iphone 图标下载
    iphone 下拉刷新(转)
    技术书评(.NET为主)
    我也设计模式——3.Singleton
    我也设计模式——14.Flyweight
    Web2.0技术研究笔记——1.分类与资源
    我也设计模式——4.Builder
    C#之CLR读书笔记 0
    IMemento 永远置顶
    我也设计模式——21.Memento
  • 原文地址:https://www.cnblogs.com/wuyuan2011woaini/p/16292148.html
Copyright © 2020-2023  润新知