一、顺序查找(基于无序链表,效率低下)
package search;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
public class SequentialSearchST<Key, Value> {
private int n; // number of key-value pairs
private Node first; // the linked list of key-value pairs
private class Node {
private Key key;
private Value val;
private Node next;
public Node(Key key, Value val, Node next) {
this.key = key;
this.val = val;
this.next = next;
}
}
public SequentialSearchST() {
}
public int size() {
return n;
}
public boolean isEmpty() {
return size() == 0;
}
//判断是否包含key
public boolean contains(Key key) {
if (key == null) throw new IllegalArgumentException("argument to contains() is null");
return get(key) != null;
}
//查找key的值
public Value get(Key key) {
if (key == null) throw new IllegalArgumentException("argument to get() is null");
for (Node x = first; x != null; x = x.next) {
if (key.equals(x.key))
return x.val;
}
return null;
}
//增加键值对
public void put(Key key, Value val) {
if (key == null) throw new IllegalArgumentException("first argument to put() is null");
if (val == null) {
delete(key);
return;
}
for (Node x = first; x != null; x = x.next) {
if (key.equals(x.key)) {
x.val = val;
return;
}
}
first = new Node(key, val, first);
n++;
}
//删除
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("argument to delete() is null");
first = delete(first, key);
}
// delete key in linked list beginning at Node x
// warning: function call stack too large if table is large
private Node delete(Node x, Key key) {
if (x == null) return null;
if (key.equals(x.key)) {
n--;
return x.next;
}
x.next = delete(x.next, key);
return x;
}
public Iterable<Key> keys() {
Queue<Key> queue = new Queue<Key>();
for (Node x = first; x != null; x = x.next)
queue.enqueue(x.key);
return queue;
}
public static void main(String[] args) {
SequentialSearchST<String, Integer> st = new SequentialSearchST<String, Integer>();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
}
}
二.有序数组中的二分查找
package search;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import java.util.NoSuchElementException;
public class BinarySearchST<Key extends Comparable<Key>, Value> {
private static final int INIT_CAPACITY = 2;
private Key[] keys;
private Value[] vals;
private int n = 0;
public BinarySearchST() {
this(INIT_CAPACITY);
}
public BinarySearchST(int capacity) {
keys = (Key[]) new Comparable[capacity];
vals = (Value[]) new Object[capacity];
}
//数组扩容
private void resize(int capacity) {
assert capacity >= n;
Key[] tempk = (Key[]) new Comparable[capacity];
Value[] tempv = (Value[]) new Object[capacity];
for (int i = 0; i < n; i++) {
tempk[i] = keys[i];
tempv[i] = vals[i];
}
vals = tempv;
keys = tempk;
}
public int size() {
return n;
}
public boolean isEmpty() {
return size() == 0;
}
//判断是否包含key
public boolean contains(Key key) {
if (key == null) throw new IllegalArgumentException("argument to contains() is null");
return get(key) != null;
}
//查找key的值
public Value get(Key key) {
if (key == null) throw new IllegalArgumentException("argument to get() is null");
if (isEmpty()) return null;
int i = rank(key);
if (i < n && keys[i].compareTo(key) == 0) return vals[i];
return null;
}
//返回表中小于给定键的键的数量(二分查找)
public int rank(Key key) {
if (key == null) throw new IllegalArgumentException("argument to rank() is null");
int lo = 0, hi = n-1;
while (lo <= hi) {
int mid = lo + (hi - lo) / 2;
int cmp = key.compareTo(keys[mid]);
if (cmp < 0) hi = mid - 1;
else if (cmp > 0) lo = mid + 1;
else return mid;
}
return lo;
}
//插入键值
public void put(Key key, Value val) {
if (key == null) throw new IllegalArgumentException("first argument to put() is null");
if (val == null) {
delete(key);
return;
}
int i = rank(key);
// key已经存在于表中
if (i < n && keys[i].compareTo(key) == 0) {
vals[i] = val;
return;
}
// insert new key-value pair
if (n == keys.length) resize(2*keys.length);
for (int j = n; j > i; j--) {
keys[j] = keys[j-1];
vals[j] = vals[j-1];
}
keys[i] = key;
vals[i] = val;
n++;
assert check();
}
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("argument to delete() is null");
if (isEmpty()) return;
// compute rank
int i = rank(key);
// key not in table
if (i == n || keys[i].compareTo(key) != 0) {
return;
}
for (int j = i; j < n-1; j++) {
keys[j] = keys[j+1];
vals[j] = vals[j+1];
}
n--;
keys[n] = null; // to avoid loitering
vals[n] = null;
// resize if 1/4 full
if (n > 0 && n == keys.length/4) resize(keys.length/2);
assert check();
}
//删除最小键值对
public void deleteMin() {
if (isEmpty()) throw new NoSuchElementException("Symbol table underflow error");
delete(min());
}
//删除最大键值对
public void deleteMax() {
if (isEmpty()) throw new NoSuchElementException("Symbol table underflow error");
delete(max());
}
//最小值得键
public Key min() {
if (isEmpty()) throw new NoSuchElementException("called min() with empty symbol table");
return keys[0];
}
//最大值得键
public Key max() {
if (isEmpty()) throw new NoSuchElementException("called max() with empty symbol table");
return keys[n-1];
}
//查看索引k对应的key
public Key select(int k) {
if (k < 0 || k >= size()) {
throw new IllegalArgumentException("called select() with invalid argument: " + k);
}
return keys[k];
}
//向下取整
public Key floor(Key key) {
if (key == null) throw new IllegalArgumentException("argument to floor() is null");
int i = rank(key);
if (i < n && key.compareTo(keys[i]) == 0) return keys[i];
if (i == 0) return null;
else return keys[i-1];
}
//向下取整
public Key ceiling(Key key) {
if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
int i = rank(key);
if (i == n) return null;
else return keys[i];
}
public int size(Key lo, Key hi) {
if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
if (hi == null) throw new IllegalArgumentException("second argument to size() is null");
if (lo.compareTo(hi) > 0) return 0;
if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank(hi) - rank(lo);
}
public Iterable<Key> keys() {
return keys(min(), max());
}
public Iterable<Key> keys(Key lo, Key hi) {
if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");
Queue<Key> queue = new Queue<Key>();
if (lo.compareTo(hi) > 0) return queue;
for (int i = rank(lo); i < rank(hi); i++)
queue.enqueue(keys[i]);
if (contains(hi)) queue.enqueue(keys[rank(hi)]);
return queue;
}
private boolean check() {
return isSorted() && rankCheck();
}
private boolean isSorted() {
for (int i = 1; i < size(); i++)
if (keys[i].compareTo(keys[i-1]) < 0) return false;
return true;
}
// check that rank(select(i)) = i
private boolean rankCheck() {
for (int i = 0; i < size(); i++)
if (i != rank(select(i))) return false;
for (int i = 0; i < size(); i++)
if (keys[i].compareTo(select(rank(keys[i]))) != 0) return false;
return true;
}
public static void main(String[] args) {
BinarySearchST<String, Integer> st = new BinarySearchST<String, Integer>();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
}
}
三.二叉查找树
package search;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import java.util.NoSuchElementException;
public class BST<Key extends Comparable<Key>, Value> {
private Node root; // root of BST
private class Node {
private Key key; // sorted by key
private Value val; // associated data
private Node left, right; // left and right subtrees
private int size; // number of nodes in subtree
public Node(Key key, Value val, int size) {
this.key = key;
this.val = val;
this.size = size;
}
}
public BST() {
}
public boolean isEmpty() {
return size() == 0;
}
public int size() {
return size(root);
}
// return number of key-value pairs in BST rooted at x
private int size(Node x) {
if (x == null) return 0;
else return x.size;
}
//判断是否存在key
public boolean contains(Key key) {
if (key == null) throw new IllegalArgumentException("argument to contains() is null");
return get(key) != null;
}
//得到key对应的值
public Value get(Key key) {
return get(root, key);
}
private Value get(Node x, Key key) {
if (key == null) throw new IllegalArgumentException("calls get() with a null key");
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp < 0) return get(x.left, key);
else if (cmp > 0) return get(x.right, key);
else return x.val;
}
//新增键值对
public void put(Key key, Value val) {
if (key == null) throw new IllegalArgumentException("calls put() with a null key");
if (val == null) {
delete(key);
return;
}
root = put(root, key, val);
assert check();
}
private Node put(Node x, Key key, Value val) {
if (x == null) return new Node(key, val, 1);
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;
x.size = 1 + size(x.left) + size(x.right);
return x;
}
//删除最小值
public void deleteMin() {
if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
root = deleteMin(root);
assert check();
}
private Node deleteMin(Node x) {
if (x.left == null) return x.right;
x.left = deleteMin(x.left);
x.size = size(x.left) + size(x.right) + 1;
return x;
}
//删除最大值
public void deleteMax() {
if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
root = deleteMax(root);
assert check();
}
private Node deleteMax(Node x) {
if (x.right == null) return x.left;
x.right = deleteMax(x.right);
x.size = size(x.left) + size(x.right) + 1;
return x;
}
//删除操作
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("calls delete() with a null key");
root = delete(root, key);
assert check();
}
private Node delete(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = delete(x.left, key);
else if (cmp > 0) x.right = delete(x.right, key);
else {
if (x.right == null) return x.left;
if (x.left == null) return x.right;
Node t = x;
x = min(t.right);
x.right = deleteMin(t.right);
x.left = t.left;
}
x.size = size(x.left) + size(x.right) + 1;
return x;
}
public Key min() {
if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
return min(root).key;
}
private Node min(Node x) {
if (x.left == null) return x;
else return min(x.left);
}
public Key max() {
if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
return max(root).key;
}
private Node max(Node x) {
if (x.right == null) return x;
else return max(x.right);
}
//向下取整
public Key floor(Key key) {
if (key == null) throw new IllegalArgumentException("argument to floor() is null");
if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
Node x = floor(root, key);
if (x == null) throw new NoSuchElementException("argument to floor() is too small");
else return x.key;
}
private Node floor(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);
if (t != null) return t;
else return x;
}
public Key floor2(Key key) {
Key x = floor2(root, key, null);
if (x == null) throw new NoSuchElementException("argument to floor() is too small");
else return x;
}
private Key floor2(Node x, Key key, Key best) {
if (x == null) return best;
int cmp = key.compareTo(x.key);
if (cmp < 0) return floor2(x.left, key, best);
else if (cmp > 0) return floor2(x.right, key, x.key);
else return x.key;
}
//向上取整
public Key ceiling(Key key) {
if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
Node x = ceiling(root, key);
if (x == null) throw new NoSuchElementException("argument to floor() is too large");
else return x.key;
}
private Node ceiling(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) {
Node t = ceiling(x.left, key);
if (t != null) return t;
else return x;
}
return ceiling(x.right, key);
}
public Key select(int k) {
if (k < 0 || k >= size()) {
throw new IllegalArgumentException("argument to select() is invalid: " + k);
}
Node x = select(root, k);
return x.key;
}
// Return key of rank k.
private Node select(Node x, int k) {
if (x == null) return null;
int t = size(x.left);
if (t > k) return select(x.left, k);
else if (t < k) return select(x.right, k-t-1);
else return x;
}
//返回小于key的数量
public int rank(Key key) {
if (key == null) throw new IllegalArgumentException("argument to rank() is null");
return rank(key, root);
}
private int rank(Key key, Node x) {
if (x == null) return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);
}
public Iterable<Key> keys() {
if (isEmpty()) return new Queue<Key>();
return keys(min(), max());
}
public Iterable<Key> keys(Key lo, Key hi) {
if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");
Queue<Key> queue = new Queue<Key>();
keys(root, queue, lo, hi);
return queue;
}
private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
if (x == null) return;
int cmplo = lo.compareTo(x.key);
int cmphi = hi.compareTo(x.key);
if (cmplo < 0) keys(x.left, queue, lo, hi);
if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
if (cmphi > 0) keys(x.right, queue, lo, hi);
}
public int size(Key lo, Key hi) {
if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
if (hi == null) throw new IllegalArgumentException("second argument to size() is null");
if (lo.compareTo(hi) > 0) return 0;
if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank(hi) - rank(lo);
}
//返回树的高度
public int height() {
return height(root);
}
private int height(Node x) {
if (x == null) return -1;
return 1 + Math.max(height(x.left), height(x.right));
}
public Iterable<Key> levelOrder() {
Queue<Key> keys = new Queue<Key>();
Queue<Node> queue = new Queue<Node>();
queue.enqueue(root);
while (!queue.isEmpty()) {
Node x = queue.dequeue();
if (x == null) continue;
keys.enqueue(x.key);
queue.enqueue(x.left);
queue.enqueue(x.right);
}
return keys;
}
private boolean check() {
if (!isBST()) StdOut.println("Not in symmetric order");
if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
if (!isRankConsistent()) StdOut.println("Ranks not consistent");
return isBST() && isSizeConsistent() && isRankConsistent();
}
// does this binary tree satisfy symmetric order?
// Note: this test also ensures that data structure is a binary tree since order is strict
private boolean isBST() {
return isBST(root, null, null);
}
// is the tree rooted at x a BST with all keys strictly between min and max
// (if min or max is null, treat as empty constraint)
// Credit: Bob Dondero's elegant solution
private boolean isBST(Node x, Key min, Key max) {
if (x == null) return true;
if (min != null && x.key.compareTo(min) <= 0) return false;
if (max != null && x.key.compareTo(max) >= 0) return false;
return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
}
// are the size fields correct?
private boolean isSizeConsistent() { return isSizeConsistent(root); }
private boolean isSizeConsistent(Node x) {
if (x == null) return true;
if (x.size != size(x.left) + size(x.right) + 1) return false;
return isSizeConsistent(x.left) && isSizeConsistent(x.right);
}
// check that ranks are consistent
private boolean isRankConsistent() {
for (int i = 0; i < size(); i++)
if (i != rank(select(i))) return false;
for (Key key : keys())
if (key.compareTo(select(rank(key))) != 0) return false;
return true;
}
public static void main(String[] args) {
BST<String, Integer> st = new BST<String, Integer>();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
for (String s : st.levelOrder())
StdOut.println(s + " " + st.get(s));
StdOut.println();
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
}
}
四.红黑树
package sort;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import java.util.NoSuchElementException;
public class RedBlackBST<Key extends Comparable<Key>, Value> {
private static final boolean RED = true;
private static final boolean BLACK = false;
private Node root; // root of the BST
private class Node {
private Key key; // key
private Value val; // associated data
private Node left, right; // links to left and right subtrees
private boolean color; // color of parent link
private int size; // subtree count
public Node(Key key, Value val, boolean color, int size) {
this.key = key;
this.val = val;
this.color = color;
this.size = size;
}
}
public RedBlackBST() {
}
/***************************************************************************
* Node helper methods.
***************************************************************************/
// is node x red; false if x is null ?
private boolean isRed(Node x) {
if (x == null) return false;
return x.color == RED;
}
private int size(Node x) {
if (x == null) return 0;
return x.size;
}
/**
* Returns the number of key-value pairs in this symbol table.
* @return the number of key-value pairs in this symbol table
*/
public int size() {
return size(root);
}
public boolean isEmpty() {
return root == null;
}
/***************************************************************************
* Standard BST search.
***************************************************************************/
/**
* Returns the value associated with the given key.
* @param key the key
* @return the value associated with the given key if the key is in the symbol table
* and {@code null} if the key is not in the symbol table
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public Value get(Key key) {
if (key == null) throw new IllegalArgumentException("argument to get() is null");
return get(root, key);
}
// value associated with the given key in subtree rooted at x; null if no such key
private Value get(Node x, Key key) {
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
}
return null;
}
/**
* Does this symbol table contain the given key?
* @param key the key
* @return {@code true} if this symbol table contains {@code key} and
* {@code false} otherwise
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public boolean contains(Key key) {
return get(key) != null;
}
/***************************************************************************
* Red-black tree insertion.
***************************************************************************/
/**
* Inserts the specified key-value pair into the symbol table, overwriting the old
* value with the new value if the symbol table already contains the specified key.
* Deletes the specified key (and its associated value) from this symbol table
* if the specified value is {@code null}.
*
* @param key the key
* @param val the value
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void put(Key key, Value val) {
if (key == null) throw new IllegalArgumentException("first argument to put() is null");
if (val == null) {
delete(key);
return;
}
root = put(root, key, val);
root.color = BLACK;
// assert check();
}
// insert the key-value pair in the subtree rooted at h
private Node put(Node h, Key key, Value val) {
if (h == null) return new Node(key, val, RED, 1);
int cmp = key.compareTo(h.key);
if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else h.val = val;
// fix-up any right-leaning links
if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h);
h.size = size(h.left) + size(h.right) + 1;
return h;
}
/***************************************************************************
* Red-black tree deletion.
***************************************************************************/
/**
* Removes the smallest key and associated value from the symbol table.
* @throws NoSuchElementException if the symbol table is empty
*/
public void deleteMin() {
if (isEmpty()) throw new NoSuchElementException("BST underflow");
// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;
root = deleteMin(root);
if (!isEmpty()) root.color = BLACK;
// assert check();
}
// delete the key-value pair with the minimum key rooted at h
private Node deleteMin(Node h) {
if (h.left == null)
return null;
if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);
h.left = deleteMin(h.left);
return balance(h);
}
/**
* Removes the largest key and associated value from the symbol table.
* @throws NoSuchElementException if the symbol table is empty
*/
public void deleteMax() {
if (isEmpty()) throw new NoSuchElementException("BST underflow");
// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;
root = deleteMax(root);
if (!isEmpty()) root.color = BLACK;
// assert check();
}
// delete the key-value pair with the maximum key rooted at h
private Node deleteMax(Node h) {
if (isRed(h.left))
h = rotateRight(h);
if (h.right == null)
return null;
if (!isRed(h.right) && !isRed(h.right.left))
h = moveRedRight(h);
h.right = deleteMax(h.right);
return balance(h);
}
/**
* Removes the specified key and its associated value from this symbol table
* (if the key is in this symbol table).
*
* @param key the key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("argument to delete() is null");
if (!contains(key)) return;
// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;
root = delete(root, key);
if (!isEmpty()) root.color = BLACK;
// assert check();
}
// delete the key-value pair with the given key rooted at h
private Node delete(Node h, Key key) {
// assert get(h, key) != null;
if (key.compareTo(h.key) < 0) {
if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);
h.left = delete(h.left, key);
}
else {
if (isRed(h.left))
h = rotateRight(h);
if (key.compareTo(h.key) == 0 && (h.right == null))
return null;
if (!isRed(h.right) && !isRed(h.right.left))
h = moveRedRight(h);
if (key.compareTo(h.key) == 0) {
Node x = min(h.right);
h.key = x.key;
h.val = x.val;
// h.val = get(h.right, min(h.right).key);
// h.key = min(h.right).key;
h.right = deleteMin(h.right);
}
else h.right = delete(h.right, key);
}
return balance(h);
}
/***************************************************************************
* Red-black tree helper functions.
***************************************************************************/
// make a left-leaning link lean to the right
private Node rotateRight(Node h) {
// assert (h != null) && isRed(h.left);
Node x = h.left;
h.left = x.right;
x.right = h;
x.color = x.right.color;
x.right.color = RED;
x.size = h.size;
h.size = size(h.left) + size(h.right) + 1;
return x;
}
// make a right-leaning link lean to the left
private Node rotateLeft(Node h) {
// assert (h != null) && isRed(h.right);
Node x = h.right;
h.right = x.left;
x.left = h;
x.color = x.left.color;
x.left.color = RED;
x.size = h.size;
h.size = size(h.left) + size(h.right) + 1;
return x;
}
// flip the colors of a node and its two children
private void flipColors(Node h) {
// h must have opposite color of its two children
// assert (h != null) && (h.left != null) && (h.right != null);
// assert (!isRed(h) && isRed(h.left) && isRed(h.right))
// || (isRed(h) && !isRed(h.left) && !isRed(h.right));
h.color = !h.color;
h.left.color = !h.left.color;
h.right.color = !h.right.color;
}
// Assuming that h is red and both h.left and h.left.left
// are black, make h.left or one of its children red.
private Node moveRedLeft(Node h) {
// assert (h != null);
// assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);
flipColors(h);
if (isRed(h.right.left)) {
h.right = rotateRight(h.right);
h = rotateLeft(h);
flipColors(h);
}
return h;
}
// Assuming that h is red and both h.right and h.right.left
// are black, make h.right or one of its children red.
private Node moveRedRight(Node h) {
// assert (h != null);
// assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
flipColors(h);
if (isRed(h.left.left)) {
h = rotateRight(h);
flipColors(h);
}
return h;
}
// restore red-black tree invariant
private Node balance(Node h) {
// assert (h != null);
if (isRed(h.right)) h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h);
h.size = size(h.left) + size(h.right) + 1;
return h;
}
/***************************************************************************
* Utility functions.
***************************************************************************/
/**
* Returns the height of the BST (for debugging).
* @return the height of the BST (a 1-node tree has height 0)
*/
public int height() {
return height(root);
}
private int height(Node x) {
if (x == null) return -1;
return 1 + Math.max(height(x.left), height(x.right));
}
/***************************************************************************
* Ordered symbol table methods.
***************************************************************************/
/**
* Returns the smallest key in the symbol table.
* @return the smallest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
public Key min() {
if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
return min(root).key;
}
// the smallest key in subtree rooted at x; null if no such key
private Node min(Node x) {
// assert x != null;
if (x.left == null) return x;
else return min(x.left);
}
/**
* Returns the largest key in the symbol table.
* @return the largest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
public Key max() {
if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
return max(root).key;
}
// the largest key in the subtree rooted at x; null if no such key
private Node max(Node x) {
// assert x != null;
if (x.right == null) return x;
else return max(x.right);
}
/**
* Returns the largest key in the symbol table less than or equal to {@code key}.
* @param key the key
* @return the largest key in the symbol table less than or equal to {@code key}
* @throws NoSuchElementException if there is no such key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public Key floor(Key key) {
if (key == null) throw new IllegalArgumentException("argument to floor() is null");
if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
Node x = floor(root, key);
if (x == null) throw new NoSuchElementException("argument to floor() is too small");
else return x.key;
}
// the largest key in the subtree rooted at x less than or equal to the given key
private Node floor(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);
if (t != null) return t;
else return x;
}
/**
* Returns the smallest key in the symbol table greater than or equal to {@code key}.
* @param key the key
* @return the smallest key in the symbol table greater than or equal to {@code key}
* @throws NoSuchElementException if there is no such key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public Key ceiling(Key key) {
if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
Node x = ceiling(root, key);
if (x == null) throw new NoSuchElementException("argument to ceiling() is too small");
else return x.key;
}
// the smallest key in the subtree rooted at x greater than or equal to the given key
private Node ceiling(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp > 0) return ceiling(x.right, key);
Node t = ceiling(x.left, key);
if (t != null) return t;
else return x;
}
/**
* Return the key in the symbol table whose rank is {@code k}.
* This is the (k+1)st smallest key in the symbol table.
*
* @param k the order statistic
* @return the key in the symbol table of rank {@code k}
* @throws IllegalArgumentException unless {@code k} is between 0 and
* <em>n</em>–1
*/
public Key select(int k) {
if (k < 0 || k >= size()) {
throw new IllegalArgumentException("argument to select() is invalid: " + k);
}
Node x = select(root, k);
return x.key;
}
// the key of rank k in the subtree rooted at x
private Node select(Node x, int k) {
// assert x != null;
// assert k >= 0 && k < size(x);
int t = size(x.left);
if (t > k) return select(x.left, k);
else if (t < k) return select(x.right, k-t-1);
else return x;
}
/**
* Return the number of keys in the symbol table strictly less than {@code key}.
* @param key the key
* @return the number of keys in the symbol table strictly less than {@code key}
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public int rank(Key key) {
if (key == null) throw new IllegalArgumentException("argument to rank() is null");
return rank(key, root);
}
// number of keys less than key in the subtree rooted at x
private int rank(Key key, Node x) {
if (x == null) return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);
}
/***************************************************************************
* Range count and range search.
***************************************************************************/
/**
* Returns all keys in the symbol table as an {@code Iterable}.
* To iterate over all of the keys in the symbol table named {@code st},
* use the foreach notation: {@code for (Key key : st.keys())}.
* @return all keys in the symbol table as an {@code Iterable}
*/
public Iterable<Key> keys() {
if (isEmpty()) return new Queue<Key>();
return keys(min(), max());
}
/**
* Returns all keys in the symbol table in the given range,
* as an {@code Iterable}.
*
* @param lo minimum endpoint
* @param hi maximum endpoint
* @return all keys in the symbol table between {@code lo}
* (inclusive) and {@code hi} (inclusive) as an {@code Iterable}
* @throws IllegalArgumentException if either {@code lo} or {@code hi}
* is {@code null}
*/
public Iterable<Key> keys(Key lo, Key hi) {
if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");
Queue<Key> queue = new Queue<Key>();
// if (isEmpty() || lo.compareTo(hi) > 0) return queue;
keys(root, queue, lo, hi);
return queue;
}
// add the keys between lo and hi in the subtree rooted at x
// to the queue
private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
if (x == null) return;
int cmplo = lo.compareTo(x.key);
int cmphi = hi.compareTo(x.key);
if (cmplo < 0) keys(x.left, queue, lo, hi);
if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
if (cmphi > 0) keys(x.right, queue, lo, hi);
}
/**
* Returns the number of keys in the symbol table in the given range.
*
* @param lo minimum endpoint
* @param hi maximum endpoint
* @return the number of keys in the symbol table between {@code lo}
* (inclusive) and {@code hi} (inclusive)
* @throws IllegalArgumentException if either {@code lo} or {@code hi}
* is {@code null}
*/
public int size(Key lo, Key hi) {
if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
if (hi == null) throw new IllegalArgumentException("second argument to size() is null");
if (lo.compareTo(hi) > 0) return 0;
if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank(hi) - rank(lo);
}
/***************************************************************************
* Check integrity of red-black tree data structure.
***************************************************************************/
private boolean check() {
if (!isBST()) StdOut.println("Not in symmetric order");
if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
if (!isRankConsistent()) StdOut.println("Ranks not consistent");
if (!is23()) StdOut.println("Not a 2-3 tree");
if (!isBalanced()) StdOut.println("Not balanced");
return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();
}
// does this binary tree satisfy symmetric order?
// Note: this test also ensures that data structure is a binary tree since order is strict
private boolean isBST() {
return isBST(root, null, null);
}
// is the tree rooted at x a BST with all keys strictly between min and max
// (if min or max is null, treat as empty constraint)
// Credit: Bob Dondero's elegant solution
private boolean isBST(Node x, Key min, Key max) {
if (x == null) return true;
if (min != null && x.key.compareTo(min) <= 0) return false;
if (max != null && x.key.compareTo(max) >= 0) return false;
return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
}
// are the size fields correct?
private boolean isSizeConsistent() { return isSizeConsistent(root); }
private boolean isSizeConsistent(Node x) {
if (x == null) return true;
if (x.size != size(x.left) + size(x.right) + 1) return false;
return isSizeConsistent(x.left) && isSizeConsistent(x.right);
}
// check that ranks are consistent
private boolean isRankConsistent() {
for (int i = 0; i < size(); i++)
if (i != rank(select(i))) return false;
for (Key key : keys())
if (key.compareTo(select(rank(key))) != 0) return false;
return true;
}
// Does the tree have no red right links, and at most one (left)
// red links in a row on any path?
private boolean is23() { return is23(root); }
private boolean is23(Node x) {
if (x == null) return true;
if (isRed(x.right)) return false;
if (x != root && isRed(x) && isRed(x.left))
return false;
return is23(x.left) && is23(x.right);
}
// do all paths from root to leaf have same number of black edges?
private boolean isBalanced() {
int black = 0; // number of black links on path from root to min
Node x = root;
while (x != null) {
if (!isRed(x)) black++;
x = x.left;
}
return isBalanced(root, black);
}
// does every path from the root to a leaf have the given number of black links?
private boolean isBalanced(Node x, int black) {
if (x == null) return black == 0;
if (!isRed(x)) black--;
return isBalanced(x.left, black) && isBalanced(x.right, black);
}
public static void main(String[] args) {
RedBlackBST<String, Integer> st = new RedBlackBST<String, Integer>();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
StdOut.println();
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
StdOut.println();
}
}
五.散列表
1.基于拉链法的散列表
package search;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
public class SeparateChainingHashST<Key, Value> {
private static final int INIT_CAPACITY = 4;
private int n; // number of key-value pairs
private int m; // hash table size
private SequentialSearchST<Key, Value>[] st; // array of linked-list symbol tables
public SeparateChainingHashST() {
this(INIT_CAPACITY);
}
public SeparateChainingHashST(int m) {
this.m = m;
st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[m];
for (int i = 0; i < m; i++)
st[i] = new SequentialSearchST<Key, Value>();
}
private void resize(int chains) {
SeparateChainingHashST<Key, Value> temp = new SeparateChainingHashST<Key, Value>(chains);
for (int i = 0; i < m; i++) {
for (Key key : st[i].keys()) {
temp.put(key, st[i].get(key));
}
}
this.m = temp.m;
this.n = temp.n;
this.st = temp.st;
}
private int hash(Key key) {
return (key.hashCode() & 0x7fffffff) % m;
}
public int size() {
return n;
}
public boolean isEmpty() {
return size() == 0;
}
public boolean contains(Key key) {
if (key == null) throw new IllegalArgumentException("argument to contains() is null");
return get(key) != null;
}
public Value get(Key key) {
if (key == null) throw new IllegalArgumentException("argument to get() is null");
int i = hash(key);
return st[i].get(key);
}
public void put(Key key, Value val) {
if (key == null) throw new IllegalArgumentException("first argument to put() is null");
if (val == null) {
delete(key);
return;
}
// double table size if average length of list >= 10
if (n >= 10*m) resize(2*m);
int i = hash(key);
if (!st[i].contains(key)) n++;
st[i].put(key, val);
}
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("argument to delete() is null");
int i = hash(key);
if (st[i].contains(key)) n--;
st[i].delete(key);
// halve table size if average length of list <= 2
if (m > INIT_CAPACITY && n <= 2*m) resize(m/2);
}
public Iterable<Key> keys() {
Queue<Key> queue = new Queue<Key>();
for (int i = 0; i < m; i++) {
for (Key key : st[i].keys())
queue.enqueue(key);
}
return queue;
}
public static void main(String[] args) {
SeparateChainingHashST<String, Integer> st = new SeparateChainingHashST<String, Integer>();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
}
}
2.基于线性探测法的散列表
package search;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
public class LinearProbingHashST<Key, Value> {
private static final int INIT_CAPACITY = 4;
private int n; // number of key-value pairs in the symbol table
private int m; // size of linear probing table
private Key[] keys; // the keys
private Value[] vals; // the values
public LinearProbingHashST() {
this(INIT_CAPACITY);
}
public LinearProbingHashST(int capacity) {
m = capacity;
n = 0;
keys = (Key[]) new Object[m];
vals = (Value[]) new Object[m];
}
public int size() {
return n;
}
public boolean isEmpty() {
return size() == 0;
}
public boolean contains(Key key) {
if (key == null) throw new IllegalArgumentException("argument to contains() is null");
return get(key) != null;
}
private int hash(Key key) {
return (key.hashCode() & 0x7fffffff) % m;
}
private void resize(int capacity) {
LinearProbingHashST<Key, Value> temp = new LinearProbingHashST<Key, Value>(capacity);
for (int i = 0; i < m; i++) {
if (keys[i] != null) {
temp.put(keys[i], vals[i]);
}
}
keys = temp.keys;
vals = temp.vals;
m = temp.m;
}
public void put(Key key, Value val) {
if (key == null) throw new IllegalArgumentException("first argument to put() is null");
if (val == null) {
delete(key);
return;
}
// double table size if 50% full
if (n >= m/2) resize(2*m);
int i;
for (i = hash(key); keys[i] != null; i = (i + 1) % m) {
if (keys[i].equals(key)) {
vals[i] = val;
return;
}
}
keys[i] = key;
vals[i] = val;
n++;
}
public Value get(Key key) {
if (key == null) throw new IllegalArgumentException("argument to get() is null");
for (int i = hash(key); keys[i] != null; i = (i + 1) % m)
if (keys[i].equals(key))
return vals[i];
return null;
}
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("argument to delete() is null");
if (!contains(key)) return;
// find position i of key
int i = hash(key);
while (!key.equals(keys[i])) {
i = (i + 1) % m;
}
// delete key and associated value
keys[i] = null;
vals[i] = null;
// rehash all keys in same cluster
i = (i + 1) % m;
while (keys[i] != null) {
// delete keys[i] an vals[i] and reinsert
Key keyToRehash = keys[i];
Value valToRehash = vals[i];
keys[i] = null;
vals[i] = null;
n--;
put(keyToRehash, valToRehash);
i = (i + 1) % m;
}
n--;
// halves size of array if it's 12.5% full or less
if (n > 0 && n <= m/8) resize(m/2);
assert check();
}
public Iterable<Key> keys() {
Queue<Key> queue = new Queue<Key>();
for (int i = 0; i < m; i++)
if (keys[i] != null) queue.enqueue(keys[i]);
return queue;
}
private boolean check() {
// check that hash table is at most 50% full
if (m < 2*n) {
System.err.println("Hash table size m = " + m + "; array size n = " + n);
return false;
}
// check that each key in table can be found by get()
for (int i = 0; i < m; i++) {
if (keys[i] == null) continue;
else if (get(keys[i]) != vals[i]) {
System.err.println("get[" + keys[i] + "] = " + get(keys[i]) + "; vals[i] = " + vals[i]);
return false;
}
}
return true;
}
public static void main(String[] args) {
LinearProbingHashST<String, Integer> st = new LinearProbingHashST<String, Integer>();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
// print keys
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
}
}