• Intervals


    Intervals

    Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 52 Accepted Submission(s): 32
     
    Problem Description
    You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.

    Write a program that:

    > reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,

    > computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,

    > writes the answer to the standard output
     
    Input
    The first line of the input contains an integer n (1 <= n <= 50 000) - the number of intervals. The following n lines describe the intervals. The i+1-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and 1 <= ci <= bi - ai + 1.

    Process to the end of file.
     
    Output

                The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i = 1, 2, ..., n.
     
    Sample Input
    5
    3 7 3
    8 10 3
    6 8 1
    1 3 1
    10 11 1
     
    Sample Output
    6
     
    Author
    1384
     
     
    Recommend
    Eddy
     
    /*
    题意:给n个条件 ai bi ci 表示在[ai,bi]最少取ci个数,问你最少取多少点,才能满足这些条件
    
    初步思路:差分约束问题,差分约束问题,实际上就是利用图论的知识计算不等式,每个不等式建立一条边,然后利用最短路
        跑一下
    */
    #include<bits/stdc++.h>
    using namespace std;
    int u,v,w,n;
    /*****************************************************spaf模板*****************************************************/
    template<int N,int M>
    struct Graph
    {
        int top;
        struct Vertex{
            int head;
        }V[N];
        struct Edge{
            int v,next;
            int w;
        }E[M];
        void init(){
            memset(V,-1,sizeof(V));
            top = 0;
        }
        void add_edge(int u,int v,int w){
            E[top].v = v;
            E[top].w = w;
            E[top].next = V[u].head;
            V[u].head = top++;
        }
    };
    
    Graph<50005,150005> g;
    
    const int N = 5e4 + 5;
    
    int d[N];//从某一点到i的最短路
    int inqCnt[N];
    
    bool inq[N];//标记走过的点
    
    bool spfa(int s,int n)
    {
        memset(inqCnt,0,sizeof(inqCnt));
        memset(inq,false,sizeof(inq));
        memset(d,-63,sizeof(d));
        queue<int> Q;
        Q.push(s);//将起点装进队列中
        inq[s] = true;
        d[s] = 0;
        while(!Q.empty())
        {
            int u = Q.front();
            for(int i=g.V[u].head;~i;i=g.E[i].next)//遍历所有这个点相邻的点
            {
                int v = g.E[i].v;
                int w = g.E[i].w;
                if(d[u]+w>d[v])//进行放缩
                {
                    d[v] = d[u] + w;
                    if(!inq[v])//如果这个点没有遍历过
                    {
                        Q.push(v);
                        inq[v] = true;
                        if(++inqCnt[v] > n)
                            return true;
                    }
                }
            }
            Q.pop();//将这个点出栈
            inq[u] = false;
        }
        return false;
    }
    /*****************************************************spaf模板*****************************************************/
    int main(){
        // freopen("in.txt","r",stdin);
        while(scanf("%d",&n)!=EOF){
            g.init();
            int L=50005,R=0;  
            for(int i=0;i<n;i++){  
                scanf("%d%d%d",&u,&v,&w);
                ++u,++v;
                //找出左右两个边界
                L=min(L,u);  
                R=max(R,v);
                g.add_edge(u-1,v,w);
            }  
            for(int i=L;i<=R;i++)  {  
                g.add_edge(i-1,i,0);  
                g.add_edge(i,i-1,-1);  
            }  
            spfa(L-1,R-L+2);  
            printf("%d
    ",d[R]);  
            
        }
        return 0;
    }
  • 相关阅读:
    3D Computer Grapihcs Using OpenGL
    3D Computer Grapihcs Using OpenGL
    3D Computer Grapihcs Using OpenGL
    3D Computer Grapihcs Using OpenGL
    转:RealThinClient LinkedObjects Demo解析
    转:RealThinClient (RTC)是什么?
    DataSanp的控制老大-DSServer
    5.Firedac错误信息
    4.FireDAC组件快照 二
    3.FireDAC组件快照
  • 原文地址:https://www.cnblogs.com/wuwangchuxin0924/p/6442799.html
Copyright © 2020-2023  润新知