写在前面
今天主要学习了机器学习十讲的第四讲,然后把SparkCore中的几种常用算子都学习完毕,用WordCount做了一个小总结。
机器学习部分
今天的学习中,首先系统的分析了模型误差出现的原因:
用我自己理解的话说,模型空间限制了模型的表达能力,使得模型与真实数据之间存在一个客观的误差,叫做逼近误差。
在了解了误差的存在原因后,我们就可以讨论如何去提升模型的表达能力了,即模型提升。今天的课中提到了模型集成和深度学习的方法。对于模型集成进行了详细讲解。详细的算法有决策树算法,随机森林算法以及AdaBoost算法。算法的具体解释我这里就不再赘述(以我的表达能力也能难讲解清楚算法)。今天的内容就这些了。
Spark部分
直接上代码,不废话
// groupBy
def wordCount1(sc: SparkContext): Unit = {
val rdd: RDD[String] = sc.makeRDD(List("Hello Scala", "Hello Spark"))
val words: RDD[String] = rdd.flatMap(_.split(" "))
val group: RDD[(String, Iterable[String])] = words.groupBy(word => word)
val wordCount: RDD[(String, Int)] = group.mapValues(iter => iter.size)
}
// groupByKey
def wordCount2(sc: SparkContext): Unit = {
val rdd: RDD[String] = sc.makeRDD(List("Hello Scala", "Hello Spark"))
val words: RDD[String] = rdd.flatMap(_.split(" "))
val wordOne: RDD[(String, Int)] = words.map((_, 1))
val group: RDD[(String, Iterable[Int])] = wordOne.groupByKey()
val wordCount: RDD[(String, Int)] = group.mapValues(iter => iter.size)
}
// reduceByKey
def wordCount3(sc: SparkContext): Unit = {
val rdd: RDD[String] = sc.makeRDD(List("Hello Scala", "Hello Spark"))
val words: RDD[String] = rdd.flatMap(_.split(" "))
val wordOne: RDD[(String, Int)] = words.map((_, 1))
val wordCount: RDD[(String, Int)] = wordOne.reduceByKey(_ + _)
}
// aggregateByKey
def wordCount4(sc: SparkContext): Unit = {
val rdd: RDD[String] = sc.makeRDD(List("Hello Scala", "Hello Spark"))
val words: RDD[String] = rdd.flatMap(_.split(" "))
val wordOne: RDD[(String, Int)] = words.map((_, 1))
val wordCount: RDD[(String, Int)] = wordOne.aggregateByKey(0)(_ + _, _ + _)
}
// foldByKey
def wordCount5(sc: SparkContext): Unit = {
val rdd: RDD[String] = sc.makeRDD(List("Hello Scala", "Hello Spark"))
val words: RDD[String] = rdd.flatMap(_.split(" "))
val wordOne: RDD[(String, Int)] = words.map((_, 1))
val wordCount: RDD[(String, Int)] = wordOne.foldByKey(0)(_ + _)
}
// combineByKey
def wordCount6(sc: SparkContext): Unit = {
val rdd: RDD[String] = sc.makeRDD(List("Hello Scala", "Hello Spark"))
val words: RDD[String] = rdd.flatMap(_.split(" "))
val wordOne: RDD[(String, Int)] = words.map((_, 1))
val wordCount: RDD[(String, Int)] = wordOne.combineByKey(v => v, (x: Int, y) => x + y, (x: Int, y: Int) => x + y)
}
// countByKey
def wordCount7(sc: SparkContext): Unit = {
val rdd: RDD[String] = sc.makeRDD(List("Hello Scala", "Hello Spark"))
val words: RDD[String] = rdd.flatMap(_.split(" "))
val wordOne: RDD[(String, Int)] = words.map((_, 1))
val wordCount: collection.Map[String, Long] = wordOne.countByKey()
}
// countByValue
def wordCount8(sc: SparkContext): Unit = {
val rdd: RDD[String] = sc.makeRDD(List("Hello Scala", "Hello Spark"))
val words: RDD[String] = rdd.flatMap(_.split(" "))
val wordCount: collection.Map[String, Long] = words.countByValue()
}
// reduce,aggregate,fold
def wordCount9(sc: SparkContext): Unit = {
val rdd: RDD[String] = sc.makeRDD(List("Hello Scala", "Hello Spark"))
val words: RDD[String] = rdd.flatMap(_.split(" "))
val mapWord: RDD[mutable.Map[String, Long]] = words.map(word => mutable.Map[String, Long]((word, 1)))
val wordCount: mutable.Map[String, Long] = mapWord.reduce((map1, map2) => {
map2.foreach {
case (word, count) =>
val newCount = map1.getOrElse(word, 0L) + count
map1.update(word, newCount)
}
map1
})
}
代码难度不大,都是可以看懂的。
总结
今天少见的听懂了机器学习中的内容,倒是让我很成就感。SparkCore的部分也就告一段落了。