• day14-卷积网络识别手写数字


    卷积网络的结构为:

    代码:

    
    # coding=utf-8
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    
    def weight_variable(shape):
        """
        权重初始化函数
        :param shape:
        :return:
        """
        weight = tf.Variable(tf.random_normal(shape,seed=0.0,stddev=1.0))
        return weight
    
    def bias_variable(shape):
        """
        偏置初始化函数
        :param shape:
        :return:
        """
        bias = tf.Variable(tf.random_normal(shape, seed=0.0, stddev=1.0))
        return bias
    
    
    def model():
    
        """
        定义卷积网络模型
        :return:
        """
    
        # 1、准备数据
        with tf.variable_scope("pre_data"):
            x = tf.placeholder(tf.float32,[None,784])
            y_true = tf.placeholder(tf.int64,[None,10])
    
        # 2、定义第一层卷积网络
        # 卷积层为:[5*5*1] 大小的过滤器,有32个,步长为1
        # 池化层为 [2*2] 大小的,步长为2
        with tf.variable_scope("conv1"):
    
            # 卷积层输入的格式为[batch,heigth,width,channel],所以x的形状需要修改
            x_reshape1 = tf.reshape(x,[-1,28,28,1])
            # 初始化过滤器,为[5*5]大小的,设置32个
            filter1 = weight_variable([5,5,1,32])
            bias1 = bias_variable([32])
    
            # 卷积层定义,将数据变为[None,28,28,32]
            x_jjc1 = tf.nn.conv2d(input=x_reshape1,filter=filter1,strides=[1,1,1,1],padding="SAME")
    
            # 激活层
            x_relu1 = tf.nn.relu(x_jjc1) + bias1
    
            # 池化层,将数据[None,28,28,32] 变为 [None,14,14,32]
            x_pool1 = tf.nn.max_pool(x_relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
    
    
        # 3、定义第二层卷积网络
        # 卷积层为[5*5*32],64个,步长为1
        # 池化层为[2*2],步长为2
        with tf.variable_scope("conv2"):
    
            # 定义第二个卷积层的过滤器
            filter2 = weight_variable([5,5,32,64])
            bias2 = bias_variable([64])
    
            # 卷积层定义,将数据变为[None,14,14,64]
            x_jjc2 = tf.nn.conv2d(input=x_pool1,filter=filter2,strides=[1,1,1,1],padding="SAME")
    
            # 激活层
            x_relu2 = tf.nn.relu(x_jjc2) + bias2
    
            # 池化层,将数据变为[None,7,7,64]
            x_pool2 = tf.nn.max_pool(value=x_relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
    
        # 4、定义全连接层
        with tf.variable_scope("fc"):
    
            # 定义权重和偏置
            weight = weight_variable([7 * 7 * 64 ,10])
            bias_fc = bias_variable([10])
    
            x_pool2_reshape = tf.reshape(x_pool2,[-1,7*7*64])
    
            # 预测值
            y_predict = tf.matmul(x_pool2_reshape,weight) + bias_fc
    
        return x,y_true,y_predict
    
    
    def convolution():
        mnist = input_data.read_data_sets("../data/day06/",one_hot=True)
    
        # 1、定义模型
        x,y_true,y_predict = model()
    
        # 3、模型参数计算
        with tf.variable_scope("model_soft_corss"):
            # 计算交叉熵损失
            softmax = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict)
            # 计算损失平均值
            loss = tf.reduce_mean(softmax)
    
        # 4、梯度下降(反向传播算法)优化模型
        with tf.variable_scope("model_better"):
            tarin_op = tf.train.GradientDescentOptimizer(0.0001).minimize(loss)
    
        # 5、计算准确率
        with tf.variable_scope("model_acc"):
            # 计算出每个样本是否预测成功,结果为:[1,0,1,0,0,0,....,1]
            equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))
    
            # 计算出准确率,先将预测是否成功换为float可以得到详细的准确率
            acc = tf.reduce_mean(tf.cast(equal_list, tf.float32))
    
        # 6、准备工作
        # 定义变量初始化op
        init_op = tf.global_variables_initializer()
        # 定义哪些变量记录
        tf.summary.scalar("losses", loss)
        tf.summary.scalar("acces", acc)
        merge = tf.summary.merge_all()
    
        # 开启会话运行
        with tf.Session() as sess:
            # 变量初始化
            sess.run(init_op)
    
            # 开启记录
            filewriter = tf.summary.FileWriter("../summary/day08/", graph=sess.graph)
    
            for i in range(1000):
                # 准备数据
                mnist_x, mnist_y = mnist.train.next_batch(50)
    
                # 开始训练
                sess.run([tarin_op], feed_dict={x: mnist_x, y_true: mnist_y})
    
                # 得出训练的准确率,注意还需要将数据填入
                print("第%d次训练,准确率为:%f" % ((i + 1), sess.run(acc, feed_dict={x: mnist_x, y_true: mnist_y})))
    
                # 写入每步训练的值
                summary = sess.run(merge, feed_dict={x: mnist_x, y_true: mnist_y})
                filewriter.add_summary(summary, i)
    
        
        return None
    
    
    if __name__ == '__main__':
        convolution()
    
    

    结果为:

  • 相关阅读:
    vue项目本地调试,内网穿透
    EMQ开启mysql认证
    vsftpd配置安装
    express使用https
    vue实现图片的上传和删除
    Linux下获取java堆栈文件并进行分析
    kill -3 PID命令获取java应用堆栈信息
    Linux下的java虚拟机性能监控与故障处理命令
    k8s下的eureak服务注册失败(cannot execute request on any known server)解决
    MariaDB主从复制虚拟机实战
  • 原文地址:https://www.cnblogs.com/wuren-best/p/14316047.html
Copyright © 2020-2023  润新知