• 最近公共祖先 Least Common Ancestors(LCA)算法 --- 与RMQ问题的转换


    【简介】

         LCA(T,u,v):在有根树T中,询问一个距离根最远的结点x,使得x同时为结点u、v的祖先。

         RMQ(A,i,j):对于线性序列A中,询问区间[i,j]上的最值。见我的博客---RMQ ---- ST(Sparse Table)算法

    【LCA算法】

          解决LCA问题有多种算法,一种是离线的 Tarjan算法 ,还有在线的倍增法 ,还有就是转换为RMQ问题的在线算法

    【LCA转化为RMQ】

        

            (一)对有根树T进行DFS,将遍历到的结点按照顺序记下,我们将得到一个长度为2N – 1的序列,称之为T的欧拉序列F 。

            (二)每个结点都在欧拉序列中出现,我们记录结点u在欧拉序列中第一次出现的位置为pos(u)。

       根据DFS的性质,对于两结点u、v,从pos(u)遍历到pos(v)的过程中经过LCA(u, v)有且仅有一次,且深度是深度序列B[pos(u)…pos(v)]中最小的。
       即LCA(T, u, v) = RMQ(B, pos(u), pos(v)),并且问题规模仍然是O(N)的。

      至此,LCA问题就转化为RMQ问题。

    【RMQ转化为LCA】

        简单说明下吧:考察一个长度为N的序列A,按照如下方法将其递归建立为一棵树:

    1)设序列中最小值为Ak,建立优先级为Ak的根节点Tk
    2)将A(1…k–1)递归建树作为Tk的左子树;
    3)将A(k+1…N)递归建树作为Tk的右子树;
        不难发现,这棵树是一棵优先级树T。
        对于RMQ(A,i,j):
    1)设序列中最小值为Ak,若k∈[i, j],那么答案为k;
    2)若k > j,那么答案为RMQ(A1..k-1,i,j);
    3)若k < i,那么答案为RMQ(AK+1..N,i,j);
         不难发现RMQ(A,i,j) = LCA(T,i,j)
    【例题 HDU 2586】
  • 相关阅读:
    Pika的设计及实现
    高性能网络编程
    C语言的结构体
    消息队列库——ZeroMQ
    Diffie-Hellman密钥交换算法
    mysql-proxy 读写分离
    位运算
    分布式学习之一:事务
    Redis Cluster
    SpringBoot整合ActiveMQ,看这篇就够了
  • 原文地址:https://www.cnblogs.com/wuminye/p/3525957.html
Copyright © 2020-2023  润新知