• HDU 6697 Closest Pair of Segments (计算几何 暴力)


    2019 杭电多校 10 1007

    题目链接:HDU 6697

    比赛链接:2019 Multi-University Training Contest 10

    Problem Description

    The closest pair of points problem is a well-known problem of computational geometry. In this problem, you are given (n) points in the Euclidean plane and you need to find a pair of points with the smallest distance between them.

    Now, Claris, the brilliant one who has participated in programming contests for several years, is trying to solve a harder problem named the closest pair of segments problem, which also has a quite simple description as above.

    However, the problem seems even too hard for Claris and she is asking you for help.

    Now (n) segments are lying on the Euclidean plane, you are asked to pick two different segments and then pick a point on the two segments respectively to minimize the distance between these two points.

    For simplicity, any two given segments share no common point, and you don't need to show her the two chosen points, but the distance between them instead.

    Input

    The input contains several test cases, and the first line contains a single integer (T (1le Tle 200)), the number of test cases.

    For each test case, the first line contains one integer (n (2le nle 10000)), which is the number of segments on the Euclidean plane.

    The following (n) lines describe all the segments lying on the Euclidean plane, the (i)-th of which contains for integers (x_1,y_1,x_2) and (y_2) describing a segment that connects ((x_1,y_1)) and ((x_2,y_2)), where (−10^9le x_1,y_1,x_2,y_2le 10^9).

    It's guaranteed that the two endpoints of each segment do not coincide, any two given segments do not intersect with each other in each test case, and no more than (20) test cases satisfy (n>1000).

    Output

    For each test case, output a line containing a single real number for the answer to the closest pair of segments problem with an absolute or relative error of at most (10^{−6}).

    Precisely speaking, assume that your answer is (a) and and the jury's answer is (b), your answer will be considered correct if and only if (frac{|a−b|}{max{1,|b|}}le 10^{−6}).

    Sample Input

    2
    2
    0 1 1 2
    1 1 2 0
    2
    0 1 1 2
    2 2 3 1
    

    Sample Output

    0.707106781187
    1.000000000000
    

    Solution

    题意

    类似于计算几何中的最近点对问题,本题求的是最近线段对。

    给定 (n) 条线段,求出最近线段对之间的距离。

    题解

    暴力 剪枝

    比赛时我用了三角剖分,结果超时了。

    赛后补题时看到了这篇博客:HDU 6697 Closest Pair of Segments(线段距离)

    原来暴力加上剪枝就能过。思路是这样的:

    首先将线段的左侧端点按照横坐标为第一关键字,纵坐标为第二关键字排序。然后暴力找所有线段对,维护最小值 (ans)。如果当前查询的线段对中,右侧线段的左端点与左侧线段的右端点的横坐标差值大于 (ans) 时,就不用再找更右侧的直线了。这样剪枝能大大减少时间复杂度。

    时限给了 20s,大概 1.3s 就能跑完。

    题解看不懂

    Code

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    typedef long long ll;
    typedef double db;
    const db eps = 1e-10;
    const db pi = acos(-1.0);
    const ll inf = 0x3f3f3f3f3f3f3f3f;
    const ll maxn = 1e5 + 10;
    
    inline int dcmp(db x) {
        if(fabs(x) < eps) return 0;
        return x > 0? 1: -1;
    }
    
    struct Point {
        double x, y;
        Point(double x = 0, double y = 0) : x(x), y(y) {}
        void input() {
            scanf("%lf%lf", &x, &y);
        }
        bool operator<(const Point &a) const {
            return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
        }
        bool operator==(const Point &a) const {
            return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
        }
        db dis2(const Point a) {
            return pow(x - a.x, 2) + pow(y - a.y, 2);
        }
    
        db dis(const Point a) {
            return sqrt(dis2(a));
        }
    
        db dis2() {
            return x * x + y * y;
        }
        db dis() {
            return sqrt(dis2());
        }
        Point operator+(const Point a) {
            return Point(x + a.x, y + a.y);
        }
        Point operator-(const Point a) {
            return Point(x - a.x, y - a.y);
        }
        db dot(const Point a) {
            return x * a.x + y * a.y;
        }
        db cross(const Point a) {
            return x * a.y - y * a.x;
        }
    
    };
    typedef Point Vector;
    
    struct Line {
        Point s, e;
        Line() {}
        Line(Point s, Point e) : s(s), e(e) {}
        void input() {
            s.input();
            e.input();
        }
        db length() {
            return s.dis(e);
        }
    
        // 点到直线的距离
        db point_to_line(Point p) {
            return fabs((p - s).cross(e - s) / length());
        }
    
        // 点到线段的距离
        db point_to_seg(Point p) {
    		if(dcmp((p - s).dot((e - s))) < 0 || dcmp((p - e).dot((s - e))) < 0) {
    			return min(p.dis(s), p.dis(e));
    		}
    		return point_to_line(p);
        }
    
        // 线段到线段的距离
        db seg_to_seg(Line l) {
    		return min(min(point_to_seg(l.s), point_to_seg(l.e)), min(l.point_to_seg(s), l.point_to_seg(e)));
        }
    };
    
    Line l[maxn];
    
    int cmp(Line l1, Line l2) {
    	return l1.s < l2.s;
    }
    
    int main() {
        int T;
        scanf("%d", &T);
        while(T--) {
            int n;
            scanf("%d", &n);
            for(int i = 0; i < n; ++i) {
                l[i].input();
    			if(l[i].e < l[i].s) swap(l[i].s, l[i].e);
            }
    		sort(l, l + n, cmp);
    		double ans = 1e10;
    		for(int i = 0; i < n; ++i) {
    			for(int j = i + 1; j < n; ++j) {
                    // 剪枝部分
    				if(dcmp((l[j].s.x - l[i].e.x) - ans) > 0) {
    					break;
    				}
    				ans = min(ans, l[i].seg_to_seg(l[j])); // 更新最小值
    			}
    		}
    		printf("%.12lf
    ", ans);
        }
        return 0;
    }
    
  • 相关阅读:
    第三百二十八天 how can I 坚持
    第三百二十七天 how can I 坚持
    第三百二十六天 how can I 坚持
    第三百二十五天 how can I 坚持
    第三百二十四天 how can I 坚持
    第三百二十二天 how can I 坚持
    第三百二十一天 how can I 坚持
    第三百零八至三百二十天 how can I 坚持
    POJ 2346:Lucky tickets
    POJ 3461:Oulipo
  • 原文地址:https://www.cnblogs.com/wulitaotao/p/11404397.html
Copyright © 2020-2023  润新知