• 文件名 一阶熵 EARTH.IMG 4.770801 OMAHA.IMG 6.942426 SENA.IMG 6.834299 SENSIN.IMG 7.317944 BERK.RAW 7.151537 GABE.RAW 7.116338


    3-2  利用程序huff_enc和huff­_dec进行以下操作(在每种情况下,利用由被压缩图像生成的码本)。

         (a)对Sena、Sensin和Omaha图像时行编码。

         (b)编写一段程序,得到相邻之差,然后利用huffman对差值图像进行编码。

         (c) 使用adap_huff重复(a)和(b)。

    答:

    文件名 压缩前大小 压缩后大小 压缩比
    Sence 64k 57k 0.89
    Sensin 64k 61k 0.95
    Omaha 64k 58k 0.91

    3-4  一个信源从符号集A={a1, a2, a3, a4, a5}中选择字母,概率为P(a1)=0.15,P(a2)=0.04,P(a3)=0.26,P(a4)=0.05,P(a5)=0.50。

         (a)计算这个信源的熵。

         (b)求这个信源的霍夫曼码。

         (c) 求(b)中代码的平均长度及其冗余度。

    解:(a) H=-0.15log20.15-0.04log20.04-0.26log20.26-0.05log20.05-0.50log20.50

                   =0.15*2.737+0.04*4.644+0.26*1.943+0.05*4.322+0.50*1

                   =0.411+0.186+0.505+0.216+0.5

    (b)霍夫曼编码   a1:010    a2:0111    a3:00   a4:0110   a5:1

    冗余度为:l-H=1.83-1.818=0.012 bit

    (c)    L=0.15*3+0.04*4+0.26*2+0.05*4+0.5*1=1.83(bit)

    3-5  一个符号集A={a1, a2, a3, a4,},其概率为P(a1)=0.1,P(a2)=0.3,P(a3)=0.25,P(a4)=0.35,使用以下过程找出一种霍夫曼码:

         (a)本章概述的第一种过程:

         (b)最小方差过程。

    解释这两种霍夫曼码的区别。

    答:第二种霍夫曼码方差比第一种小,所以第二种霍夫曼编码更好。

    2-6在本书配套的数据中有几个图像和语音文件。

    (a) 编写一段程序,计算其中一些图像和语音文件的一阶熵。

    (b) 选择一个图像文件,计算其二阶熵。试解释一阶熵与二阶熵的差别。

    (c) 对于(b)中所有的图像文件,计算其相邻像素之差的熵,试解释你的发现。

    答:(a)

  • 相关阅读:
    如何绕过chrome的弹窗拦截机制
    自我介绍
    注册页面的编写
    Roadmap学习目标
    Position
    poj2506 Tiling
    poj3278 Catch That Cow
    poj3624 Charm Bracelet
    钢条切割问题带你彻底理解动态规划
    poj1328 Radar Installation
  • 原文地址:https://www.cnblogs.com/wujingwen/p/4784780.html
Copyright © 2020-2023  润新知