• TVM Reduction降低算力


    TVM Reduction降低算力

    这是有关如何降低算力TVM的介绍材料。像sum / max / min这样的关联约简运算符是线性代数运算的典型构造块。

    本文将演示如何降低TVM算力。

    from __future__ import absolute_import, print_function

     

    import tvm

    import tvm.testing

    from tvm import te

    import numpy as np

    描述行数

    假设要计算行总数作为示例。用numpy语义可以写成B = numpy.sum(A, axis=1)

    以下几行描述了行求和算子。创建归约公式,使用 te.reduce_axis来声明归约轴。te.reduce_axis降低算力的范围。 te.sum接受要降低算力的表达式以及降低算力轴,并计算声明范围内所有k的值之和。

    等效的C代码如下:

    for (int i = 0; i < n; ++i) {

      B[i] = 0;

      for (int k = 0; k < m; ++k) {

        B[i] = B[i] + A[i][k];

      }

    }

    n = te.var("n")

    m = te.var("m")

    A = te.placeholder((n, m), name="A")

    k = te.reduce_axis((0, m), "k")

    B = te.compute((n,), lambda i: te.sum(A[i, k], axis=k), name="B")

    调度降低算力

    有几种调度降低算力的方法。在执行任何操作之前,打印出默认调度的IR代码。

    s = te.create_schedule(B.op)

    print(tvm.lower(s, [A, B], simple_mode=True))

    输出:

    primfn(A_1: handle, B_1: handle) -> ()
      attr = {"global_symbol": "main", "tir.noalias": True}
      buffers = {B: Buffer(B_2: Pointer(float32), float32, [n: int32], [stride: int32], type="auto"),
                 A: Buffer(A_2: Pointer(float32), float32, [n, m: int32], [stride_1: int32, stride_2: int32], type="auto")}
      buffer_map = {A_1: A, B_1: B} {
      for (i: int32, 0, n) {
        B_2[(i*stride)] = 0f32
        for (k: int32, 0, m) {
          B_2[(i*stride)] = ((float32*)B_2[(i*stride)] + (float32*)A_2[((i*stride_1) + (k*stride_2))])
        }
      }
    }

    会发现IR代码与C代码非常相似。减速轴类似于法线轴,可以拆分。

    在下面的代码中,将B的行轴和轴拆分为不同的因子。结果是嵌套归约。

    ko, ki = s[B].split(B.op.reduce_axis[0], factor=16)
    xo, xi = s[B].split(B.op.axis[0], factor=32)
    print(tvm.lower(s, [A, B], simple_mode=True))

    输出:

    primfn(A_1: handle, B_1: handle) -> ()
      attr = {"global_symbol": "main", "tir.noalias": True}
      buffers = {B: Buffer(B_2: Pointer(float32), float32, [n: int32], [stride: int32], type="auto"),
                 A: Buffer(A_2: Pointer(float32), float32, [n, m: int32], [stride_1: int32, stride_2: int32], type="auto")}
      buffer_map = {A_1: A, B_1: B} {
      for (i.outer: int32, 0, floordiv((n + 31), 32)) {
        for (i.inner: int32, 0, 32) {
          if @tir.likely((((i.outer*32) + i.inner) < n), dtype=bool) {
            B_2[(((i.outer*32) + i.inner)*stride)] = 0f32
          }
          if @tir.likely((((i.outer*32) + i.inner) < n), dtype=bool) {
            for (k.outer: int32, 0, floordiv((m + 15), 16)) {
              for (k.inner: int32, 0, 16) {
                if @tir.likely((((k.outer*16) + k.inner) < m), dtype=bool) {
                  B_2[(((i.outer*32) + i.inner)*stride)] = ((float32*)B_2[(((i.outer*32) + i.inner)*stride)] + (float32*)A_2[((((i.outer*32) + i.inner)*stride_1) + (((k.outer*16) + k.inner)*stride_2))])
                }
              }
            }
          }
        }
      }
    }

    要构建GPU内核,可以将B的行绑定到GPU线程。

    s[B].bind(xo, te.thread_axis("blockIdx.x"))
    s[B].bind(xi, te.thread_axis("threadIdx.x"))
    print(tvm.lower(s, [A, B], simple_mode=True))

    输出:

    primfn(A_1: handle, B_1: handle) -> ()
      attr = {"global_symbol": "main", "tir.noalias": True}
      buffers = {B: Buffer(B_2: Pointer(float32), float32, [n: int32], [stride: int32], type="auto"),
                 A: Buffer(A_2: Pointer(float32), float32, [n, m: int32], [stride_1: int32, stride_2: int32], type="auto")}
      buffer_map = {A_1: A, B_1: B} {
      attr [IterVar(blockIdx.x: int32, (nullptr), "ThreadIndex", "blockIdx.x")] "thread_extent" = floordiv((n + 31), 32);
      attr [IterVar(threadIdx.x: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 32 {
        if @tir.likely((((blockIdx.x*32) + threadIdx.x) < n), dtype=bool) {
          B_2[(((blockIdx.x*32) + threadIdx.x)*stride)] = 0f32
        }
        for (k.outer: int32, 0, floordiv((m + 15), 16)) {
          for (k.inner: int32, 0, 16) {
            if @tir.likely((((blockIdx.x*32) + threadIdx.x) < n), dtype=bool) {
              if @tir.likely((((k.outer*16) + k.inner) < m), dtype=bool) {
                B_2[(((blockIdx.x*32) + threadIdx.x)*stride)] = ((float32*)B_2[(((blockIdx.x*32) + threadIdx.x)*stride)] + (float32*)A_2[((((blockIdx.x*32) + threadIdx.x)*stride_1) + (((k.outer*16) + k.inner)*stride_2))])
              }
            }
          }
        }
      }
    }

    归约分解和并行化

    建立归约的一个问题是,不能简单地在归约轴上并行化。需要对约简的算子进行划分,在对临时数组进行约简之前,将局部约简结果存储在临时数组中。

    rfactor原语会重写计算。在下面的调度中,将B的结果写入临时结果B.rf。分解后的尺寸成为B.rf的第一尺寸。

    s = te.create_schedule(B.op)
    ko, ki = s[B].split(B.op.reduce_axis[0], factor=16)
    BF = s.rfactor(B, ki)
    print(tvm.lower(s, [A, B], simple_mode=True))

    输出:

    primfn(A_1: handle, B_1: handle) -> ()
      attr = {"global_symbol": "main", "tir.noalias": True}
      buffers = {B: Buffer(B_2: Pointer(float32), float32, [n: int32], [stride: int32], type="auto"),
                 A: Buffer(A_2: Pointer(float32), float32, [n, m: int32], [stride_1: int32, stride_2: int32], type="auto")}
      buffer_map = {A_1: A, B_1: B} {
      attr [B.rf: Pointer(float32)] "storage_scope" = "global";
      allocate(B.rf, float32, [(n*16)]) {
        for (k.inner: int32, 0, 16) {
          for (i: int32, 0, n) {
            B.rf[((k.inner*n) + i)] = 0f32
            for (k.outer: int32, 0, floordiv((m + 15), 16)) {
              if @tir.likely((((k.outer*16) + k.inner) < m), dtype=bool) {
                B.rf[((k.inner*n) + i)] = ((float32*)B.rf[((k.inner*n) + i)] + (float32*)A_2[((i*stride_1) + (((k.outer*16) + k.inner)*stride_2))])
              }
            }
          }
        }
        for (ax0: int32, 0, n) {
          B_2[(ax0*stride)] = 0f32
          for (k.inner.v: int32, 0, 16) {
            B_2[(ax0*stride)] = ((float32*)B_2[(ax0*stride)] + (float32*)B.rf[((k.inner.v*n) + ax0)])
          }
        }
      }
    }

    B的调度算子也将被重写为Bf缩减结果的第一轴上的和

    print(s[B].op.body)

    输出:

    [reduce(combiner=comm_reducer(result=[(x + y)], lhs=[x], rhs=[y], identity_element=[0f]), source=[B.rf[k.inner.v, ax0]], init=[], axis=[iter_var(k.inner.v, range(min=0, ext=16))], where=(bool)1, value_index=0)]

    降低算力跨线

    现在,我们可以在分解后的轴上进行并行化处理。在此,B的复位轴标记为螺纹。TVM将算力减少轴标记为线程,如果它是唯一的算力降低,则可以在设备中进行交叉线程。

    分解后的情况确实如此。也可以直接在还原轴上计算BF。最终生成的内核将按blockIdx.x划分行,按threadIdx.x划分threadIdx.y列,最后对threadIdx.x进行跨线程缩减

    xo, xi = s[B].split(s[B].op.axis[0], factor=32)
    s[B].bind(xo, te.thread_axis("blockIdx.x"))
    s[B].bind(xi, te.thread_axis("threadIdx.y"))
    tx = te.thread_axis("threadIdx.x")
    s[B].bind(s[B].op.reduce_axis[0], tx)
    s[BF].compute_at(s[B], s[B].op.reduce_axis[0])
    s[B].set_store_predicate(tx.var.equal(0))
    fcuda = tvm.build(s, [A, B], "cuda")
    print(fcuda.imported_modules[0].get_source())

    输出:

    extern "C" __global__ void default_function_kernel0(float* __restrict__ A, float* __restrict__ B, int m, int n, int stride, int stride1, int stride2) {
      float B_rf[1];
      __shared__ float red_buf0[512];
      B_rf[(0)] = 0.000000e+00f;
      for (int k_outer = 0; k_outer < (m >> 4); ++k_outer) {
        if (((((int)blockIdx.x) * 32) + ((int)threadIdx.y)) < n) {
          B_rf[(0)] = (B_rf[(0)] + A[(((((((int)blockIdx.x) * 32) + ((int)threadIdx.y)) * stride) + (((k_outer * 16) + ((int)threadIdx.x)) * stride1)))]);
        }
      }
      for (int k_outer1 = 0; k_outer1 < (((m & 15) + 15) >> 4); ++k_outer1) {
        if (((((int)blockIdx.x) * 32) + ((int)threadIdx.y)) < n) {
          if (((((m >> 4) * 16) + (k_outer1 * 16)) + ((int)threadIdx.x)) < m) {
            B_rf[(0)] = (B_rf[(0)] + A[(((((((int)blockIdx.x) * 32) + ((int)threadIdx.y)) * stride) + (((((m >> 4) * 16) + (k_outer1 * 16)) + ((int)threadIdx.x)) * stride1)))]);
          }
        }
      }
      __syncthreads();
      ((volatile float*)red_buf0)[(((((int)threadIdx.y) * 16) + ((int)threadIdx.x)))] = B_rf[(0)];
      __syncthreads();
      if (((int)threadIdx.x) < 8) {
        ((volatile float*)red_buf0)[(((((int)threadIdx.y) * 16) + ((int)threadIdx.x)))] = (((volatile float*)red_buf0)[(((((int)threadIdx.y) * 16) + ((int)threadIdx.x)))] + ((volatile float*)red_buf0)[((((((int)threadIdx.y) * 16) + ((int)threadIdx.x)) + 8))]);
        ((volatile float*)red_buf0)[(((((int)threadIdx.y) * 16) + ((int)threadIdx.x)))] = (((volatile float*)red_buf0)[(((((int)threadIdx.y) * 16) + ((int)threadIdx.x)))] + ((volatile float*)red_buf0)[((((((int)threadIdx.y) * 16) + ((int)threadIdx.x)) + 4))]);
        ((volatile float*)red_buf0)[(((((int)threadIdx.y) * 16) + ((int)threadIdx.x)))] = (((volatile float*)red_buf0)[(((((int)threadIdx.y) * 16) + ((int)threadIdx.x)))] + ((volatile float*)red_buf0)[((((((int)threadIdx.y) * 16) + ((int)threadIdx.x)) + 2))]);
        ((volatile float*)red_buf0)[(((((int)threadIdx.y) * 16) + ((int)threadIdx.x)))] = (((volatile float*)red_buf0)[(((((int)threadIdx.y) * 16) + ((int)threadIdx.x)))] + ((volatile float*)red_buf0)[((((((int)threadIdx.y) * 16) + ((int)threadIdx.x)) + 1))]);
      }
      __syncthreads();
      if (((int)threadIdx.x) == 0) {
        B[((((((int)blockIdx.x) * 32) + ((int)threadIdx.y)) * stride2))] = ((volatile float*)red_buf0)[((((int)threadIdx.y) * 16))];
      }
    }

    将结果内核与numpy进行比较,验证结果内核的正确性。

    nn = 128
    ctx = tvm.gpu(0)
    a = tvm.nd.array(np.random.uniform(size=(nn, nn)).astype(A.dtype), ctx)
    b = tvm.nd.array(np.zeros(nn, dtype=B.dtype), ctx)
    fcuda(a, b)
    tvm.testing.assert_allclose(b.asnumpy(), np.sum(a.asnumpy(), axis=1), rtol=1e-4)

    通过2D简化描述卷积

    在TVM中,可以通过2D约简来描述卷积。这是2D卷积的示例,滤波器大小= [3,3],步幅= [1,1]。

    n = te.var("n")
    Input = te.placeholder((n, n), name="Input")
    Filter = te.placeholder((3, 3), name="Filter")
    di = te.reduce_axis((0, 3), name="di")
    dj = te.reduce_axis((0, 3), name="dj")
    Output = te.compute(
        (n - 2, n - 2),
        lambda i, j: te.sum(Input[i + di, j + dj] * Filter[di, dj], axis=[di, dj]),
        name="Output",
    )
    s = te.create_schedule(Output.op)
    print(tvm.lower(s, [Input, Filter, Output], simple_mode=True))

    出:

    primfn(Input_1: handle, Filter_1: handle, Output_1: handle) -> ()
      attr = {"global_symbol": "main", "tir.noalias": True}
      buffers = {Output: Buffer(Output_2: Pointer(float32), float32, [(n: int32 - 2), (n - 2)], []),
                 Filter: Buffer(Filter_2: Pointer(float32), float32, [3, 3], []),
                 Input: Buffer(Input_2: Pointer(float32), float32, [n, n], [stride: int32, stride_1: int32], type="auto")}
      buffer_map = {Input_1: Input, Filter_1: Filter, Output_1: Output} {
      for (i: int32, 0, (n - 2)) {
        for (j: int32, 0, (n - 2)) {
          Output_2[((i*(n - 2)) + j)] = 0f32
          for (di: int32, 0, 3) {
            for (dj: int32, 0, 3) {
              Output_2[((i*(n - 2)) + j)] = ((float32*)Output_2[((i*(n - 2)) + j)] + ((float32*)Input_2[(((i + di)*stride) + ((j + dj)*stride_1))]*(float32*)Filter_2[((di*3) + dj)]))
            }
          }
        }
      }
    }

    定义通用换向归约运算

    除了内置的如降低算力操作te.sum, tvm.te.mintvm.te.max,还可以通过定义交换降低算力操作te.comm_reducer

    n = te.var("n")
    m = te.var("m")
    product = te.comm_reducer(lambda x, y: x * y, lambda t: tvm.tir.const(1, dtype=t), name="product")
    A = te.placeholder((n, m), name="A")
    k = te.reduce_axis((0, m), name="k")
    B = te.compute((n,), lambda i: product(A[i, k], axis=k), name="B")

    注意

    执行涉及多个值的归约argmax,可以通过元组输入来完成。有关更多详细信息,请参见使用协作输入描述缩减

    总结

    本文提供了降低算力调度的演练。

    • 用reduce_axis描述归约。
    • 如果需要并行性,请使用rfactor分解轴。
    • 定义新的归约运算 te.comm_reducer
    人工智能芯片与自动驾驶
  • 相关阅读:
    代码重构(转)
    Apache负载均衡 配置
    恒久的忍耐
    setInterval全面的介绍
    引用 110个Oracle 常用函数的总结
    ssl和tls
    JSTL
    java异常处理的陋习(转载)
    Java 6 JVM参数选项大全(中文版)
    liunx基础常用命令
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/14176685.html
Copyright © 2020-2023  润新知