空间点像素索引(三)
1. 点与坐标轴点相互转换
在 S2 算法中,默认划分 Cell 的等级是30,也就是说把一个正方形划分为 2^30 * 2^30个小的正方形。那么上一步的s,t映射到这个正方形上面来,对应该如何转换呢?
s,t的值域是[0,1],现在值域要扩大到[0,2^30^-1]。
// stToIJ converts value in ST coordinates to a value in IJ coordinates.
func stToIJ(s float64) int {
return clamp(int(math.Floor(maxSize*s)),
0, maxSize-1)
}
C ++ 的实现版本也一样
inline int S2CellId::STtoIJ(double s) {
// Converting from floating-point to integers via
static_cast is very slow
// on Intel processors because it requires changing the rounding
mode.
// Rounding to the nearest integer using FastIntRound() is
much faster.
// 这里减去0.5是为了四舍五入
return max(0, min(kMaxSize - 1, MathUtil::FastIntRound(kMaxSize
* s - 0.5)));
}
到这一步,是h(face,s,t) -> H(face,i,j)。
2. 坐标轴点与希尔伯特曲线Cell ID相互转换
最后一步,如何把 i,j 和希尔伯特曲线上的点关联起来呢?
const (
lookupBits = 4
swapMask
= 0x01
invertMask = 0x02
)
var (
ijToPos = [4][4]int{
{0, 1, 3, 2}, // canonical order
{0, 3, 1, 2}, // axes swapped
{2, 3, 1, 0}, // bits inverted
{2, 1, 3, 0}, // swapped &
inverted
}
posToIJ = [4][4]int{
{0, 1, 3, 2}, // canonical order: (0,0), (0,1), (1,1), (1,0)
{0, 2, 3, 1}, // axes swapped: (0,0), (1,0), (1,1), (0,1)
{3, 2, 0, 1}, // bits inverted: (1,1), (1,0), (0,0), (0,1)
{3, 1, 0, 2}, // swapped &
inverted: (1,1), (0,1), (0,0), (1,0)
}
posToOrientation = [4]int{swapMask, 0, 0, invertMask | swapMask}
lookupIJ [1 << (2*lookupBits + 2)]int
lookupPos [1 << (2*lookupBits + 2)]int
)
在变换之前,先来解释一下定义的一些变量。posToIJ 代表的是一个矩阵,里面记录了一些单元希尔伯特曲线的位置信息。把 posToIJ 数组里面的信息用图表示出来,如下图:
同理,把 ijToPos 数组里面的信息用图表示出来,如下图:
posToOrientation 数组里面装了4个数字,分别是1,0,0,3。lookupIJ 和 lookupPos 分别是两个容量为1024的数组。这里面分别对应的就是希尔伯特曲线 ID 转换成坐标轴 IJ 的转换表,和坐标轴 IJ 转换成希尔伯特曲线 ID 的转换表。
func init() {
initLookupCell(0, 0, 0, 0, 0, 0)
initLookupCell(0, 0, 0, swapMask, 0, swapMask)
initLookupCell(0, 0, 0, invertMask, 0, invertMask)
initLookupCell(0, 0, 0, swapMask|invertMask, 0, swapMask|invertMask)
}
这里是初始化的递归函数,在希尔伯特曲线的标准顺序中可以看到是有4个格子,并且格子都有顺序的,所以初始化要遍历满所有顺序。入参的第4个参数,就是从0 - 3 。
// initLookupCell initializes the lookupIJ table at init
time.
func initLookupCell(level,
i, j, origOrientation, pos, orientation int) {
if level == lookupBits {
ij := (i << lookupBits) + j
lookupPos[(ij<<2)+origOrientation] = (pos <<
2) + orientation
lookupIJ[(pos<<2)+origOrientation] = (ij << 2) + orientation
return
}
level++
i <<= 1
j <<= 1
pos <<= 2
r := posToIJ[orientation]
initLookupCell(level, i+(r[0]>>1), j+(r[0]&1), origOrientation, pos, orientation^posToOrientation[0])
initLookupCell(level, i+(r[1]>>1), j+(r[1]&1), origOrientation, pos+1, orientation^posToOrientation[1])
initLookupCell(level, i+(r[2]>>1), j+(r[2]&1), origOrientation, pos+2, orientation^posToOrientation[2])
initLookupCell(level, i+(r[3]>>1), j+(r[3]&1), origOrientation, pos+3, orientation^posToOrientation[3])
}
上面这个函数是生成希尔伯特曲线的。我们可以看到有一处对pos << 2的操作,这里是把位置变换到第一个4个小格子中,所以位置乘以了4。由于初始设置的lookupBits = 4,所以i,j的变化范围是从[0,15],总共有1616=256个,然后i,j坐标是表示的4个格子,再细分,lookupBits = 4这种情况下能表示的点的个数就是2564=1024个。这也正好是 lookupIJ 和 lookupPos 的总容量。画一个局部的图,i,j从0-7变化。
上图是一个4阶希尔伯特曲线。初始化的实际过程就是初始化4阶希尔伯特上的1024个点的坐标与坐标轴上的x,y轴的对应关系表。举个例子,下表是i,j在递归过程中产生的中间过程。下表是 lookupPos 表计算过程。
取出一行详细分析一下计算过程。假设当前(i,j)=(0,2),ij 的计算过程是把 i 左移4位再加上 j,整体结果再左移2位。目的是为了留出2位的方向位置。ij的前4位是i,接着4位是j,最后2位是方向。这样计算出ij的值就是8 。接着计算lookupPos[i j]的值。从上图中可以看到(0,2)代表的单元格的4个数字是16,17,18,19 。计算到这一步,pos的值为4(pos是专门记录生成格子到第几个了,总共pos的值会循环0-255)。pos代表的是当前是第几个格子(4个小格子组成),当前是第4个,每个格子里面有4个小格子。所以4*4就可以偏移到当前格子的第一个数字,也就是16 。posToIJ 数组里面会记录下当前格子的形状。从这里我们从中取出 orientation 。看上图,16,17,18,19对应的是 posToIJ 数组轴旋转的情况,所以17是位于轴旋转图的数字1代表的格子中。这时 orientation = 1 。这样 lookupPos[i j] 表示的数字就计算出来了,4*4+1=17 。这里就完成了i,j与希尔伯特曲线上数字的对应。那如何由希尔伯特曲线上的数字对应到实际的坐标呢?lookupIJ 数组里面记录了反向的信息。lookupIJ 数组 和 lookupPos 数组存储的信息正好是反向的。lookupIJ 数组 下表存的值是 lookupPos 数组 的下表。我们查 lookupIJ 数组 ,lookupIJ[17]的值就是8,对应算出来(i,j)=(0,2)。这个时候的i,j还是大格子。还是需要借助 posToIJ 数组 里面描述的形状信息。当前形状是轴旋转,之前也知道 orientation = 1,由于每个坐标里面有4个小格子,所以一个i,j代表的是2个小格子,所以需要乘以2,再加上形状信息里面的方向,可以计算出实际的坐标 (0 * 2 + 1 , 2 * 2 + 0) = ( 1,4) 。至此,整个球面坐标的坐标映射就已经完成了。球面上的点S(lat,lng) -> f(x,y,z) -> g(face,u,v) -> h(face,s,t) -> H(face,i,j) -> CellID。目前总共转换了6步,球面经纬度坐标转换成球面xyz坐标,再转换成外切正方体投影面上的坐标,最后变换成修正后的坐标,再坐标系变换,映射到 [0,2^30^-1]区间,最后一步就是把坐标系上的点都映射到希尔伯特曲线上。
3. S2 Cell ID 数据结构
最后需要来谈谈 S2 Cell ID 数据结构,这个数据结构直接关系到不同 Level 对应精度的问题。
上图左图中对应的是 Level 30 的情况,右图对应的是 Level 24 的情况。(2的多少次方,角标对应的也就是 Level 的值)在 S2 中,每个 CellID 是由64位的组成的。可以用一个 uint64 存储。开头的3位表示正方体6个面中的一个,取值范围[0,5]。3位可以表示0-7,但是6,7是无效值。64位的最后一位是1,这一位是特意留出来的。用来快速查找中间有多少位。从末尾最后一位向前查找,找到第一个不为0的位置,即找到第一个1。这一位的前一位到开头的第4位(因为前3位被占用)都是可用数字。绿色格子有多少个就能表示划分多少格。上图左图,绿色的有60个格子,于是可以表示[0,2^30^ -1] * [0,2^30^ -1]这么多个格子。上图右图中,绿色格子只有48个,那么就只能表示[0,2^24^ -1]*[0,2^24^ -1]这么多个格子。那么不同 level 可以代表的网格的面积究竟是多大呢?
由上一章我们知道,由于投影的原因,所以导致投影之后的面积依旧有大小差别。这里推算的公式比较复杂,就不证明了,具体的可以看文档。
MinAreaMetric = Metric{2, 8 * math.Sqrt2 / 9}
AvgAreaMetric = Metric{2, 4 * math.Pi / 6}
MaxAreaMetric = Metric{2, 2.635799256963161491}
这就是最大最小面积和平均面积的倍数关系。(下图单位是km^2^,平方公里)
level 0 就是正方体的六个面之一。地球表面积约等于510,100,000 km^2^。level 0 的面积就是地球表面积的六分之一。level 30 能表示的最小的面积0.48cm^2^,最大也就0.93cm^2^ 。
4. 与Geohash对比
Geohash有12级,从5000km 到3.7cm。中间每一级的变化比较大。有时候可能选择上一级会大很多,选择下一级又会小一些。比如选择字符串长度为4,它对应的 cell 宽度是39.1km,需求可能是50km,那么选择字符串长度为5,对应的 cell 宽度就变成了156km,瞬间又大了3倍了。这种情况选择多长的 Geohash 字符串就比较难选。选择不好,每次判断可能就还需要取出周围的8个格子再次进行判断。Geohash 需要 12 bytes 存储。S2有30级,从 0.7cm² 到 85,000,000km² 。中间每一级的变化都比较平缓,接近于4次方的曲线。所以选择精度不会出现Geohash 选择困难的问题。S2 的存储只需要一个uint64 即可存下。S2库里面不仅仅有地理编码,还有其他很多几何计算相关的库。地理编码只是其中的一小部分。本文没有介绍到的 S2 的实现还有很多很多,各种向量计算,面积计算,多边形覆盖,距离问题,球面球体上的问题,它都有实现。S2还能解决多边形覆盖的问题。比如给定一个城市,求一个多边形刚刚好覆盖住这个城市。
如上图,生成的多边形刚刚好覆盖住下面蓝色的区域。这里生成的多边形可以有大有小。不管怎么样,最终的结果也是刚刚覆盖住目标物。
用相同的 Cell 也可以达到相同的目的,上图就是用相同 Level 的 Cell 覆盖了整个圣保罗城市。这些都是 Geohash 做不到的。多边形覆盖利用的是近似的算法,虽然不是严格意义上的最优解,但是实践中效果特别好。额外值得说明的一点是,Google 文档上强调了,这种多边形覆盖的算法虽然对搜索和预处理操作非常有用,但是“不可依赖”的。理由也是因为是近似算法,并不是唯一最优算法,所以得到的解会依据库的不同版本而产生变化。
5. S2 Cell举例
先来看看经纬度和 CellID 的转换,以及矩形面积的计算。
latlng := s2.LatLngFromDegrees(31.232135, 121.41321700000003)
cellID := s2.CellIDFromLatLng(latlng)
cell := s2.CellFromCellID(cellID) //9279882742634381312
// cell.Level()
fmt.Println("latlng
= ", latlng)
fmt.Println("cell
level = ", cellID.Level())
fmt.Printf("cell
= %d
", cellID)
smallCell := s2.CellFromCellID(cellID.Parent(10))
fmt.Printf("smallCell
level = %d
", smallCell.Level())
fmt.Printf("smallCell
id = %b
", smallCell.ID())
fmt.Printf("smallCell
ApproxArea = %v
",
smallCell.ApproxArea())
fmt.Printf("smallCell
AverageArea = %v
",
smallCell.AverageArea())
fmt.Printf("smallCell
ExactArea = %v
",
smallCell.ExactArea())
这里 Parent 方法参数可以直接指定返回改点的对应 level 的 CellID。上面那些方法打印出来的结果如下:
latlng = [31.2321350, 121.4132170]
cell level = 30
cell = 3869277663051577529
****Parent **** 10000000000000000000000000000000000000000
smallCell level = 10
smallCell id = 11010110110010011011110000000000000000000000000000000000000000
smallCell ApproxArea = 1.9611002454714756e-06
smallCell AverageArea = 1.997370817559429e-06
smallCell ExactArea = 1.9611009480261058e-06
再举一个覆盖多边形的例子。我们先随便创建一个区域。
rect = s2.RectFromLatLng(s2.LatLngFromDegrees(48.99, 1.852))
rect = rect.AddPoint(s2.LatLngFromDegrees(48.68, 2.75))
rc := &s2.RegionCoverer{MaxLevel: 20, MaxCells: 10, MinLevel: 2}
r := s2.Region(rect.CapBound())
covering := rc.Covering(r)
覆盖参数设置成 level 2 - 20,最多的 Cell 的个数是10个。
接着我们把 Cell 至多改成20个。
最后再改成30个。
可以看到相同的 level 的范围,cell 个数越多越精确目标范围。
这里是匹配矩形区域,匹配圆形区域也同理。
代码就不贴了,与矩形类似。这种功能 Geohash 就做不到,需要自己手动实现了。
最后举一个多边形匹配的例子。
func testLoop() {
ll1 := s2.LatLngFromDegrees(31.803269, 113.421145)
ll2 := s2.LatLngFromDegrees(31.461846, 113.695803)
ll3 := s2.LatLngFromDegrees(31.250756, 113.756228)
ll4 := s2.LatLngFromDegrees(30.902604, 113.997927)
ll5 := s2.LatLngFromDegrees(30.817726, 114.464846)
ll6 := s2.LatLngFromDegrees(30.850743, 114.76697)
ll7 := s2.LatLngFromDegrees(30.713884, 114.997683)
ll8 := s2.LatLngFromDegrees(30.430111, 115.42615)
ll9 := s2.LatLngFromDegrees(30.088491, 115.640384)
ll10 := s2.LatLngFromDegrees(29.907713, 115.656863)
ll11 := s2.LatLngFromDegrees(29.783833, 115.135012)
ll12 := s2.LatLngFromDegrees(29.712295, 114.728518)
ll13 := s2.LatLngFromDegrees(29.55473, 114.24512)
ll14 := s2.LatLngFromDegrees(29.530835, 113.717776)
ll15 := s2.LatLngFromDegrees(29.55473, 113.3772)
ll16 := s2.LatLngFromDegrees(29.678892, 112.998172)
ll17 := s2.LatLngFromDegrees(29.941039, 112.349978)
ll18 := s2.LatLngFromDegrees(30.040949, 112.025882)
ll19 := s2.LatLngFromDegrees(31.803269, 113.421145)
point1 := s2.PointFromLatLng(ll1)
point2 := s2.PointFromLatLng(ll2)
point3 := s2.PointFromLatLng(ll3)
point4 := s2.PointFromLatLng(ll4)
point5 := s2.PointFromLatLng(ll5)
point6 := s2.PointFromLatLng(ll6)
point7 := s2.PointFromLatLng(ll7)
point8 := s2.PointFromLatLng(ll8)
point9 := s2.PointFromLatLng(ll9)
point10 := s2.PointFromLatLng(ll10)
point11 := s2.PointFromLatLng(ll11)
point12 := s2.PointFromLatLng(ll12)
point13 := s2.PointFromLatLng(ll13)
point14 := s2.PointFromLatLng(ll14)
point15 := s2.PointFromLatLng(ll15)
point16 := s2.PointFromLatLng(ll16)
point17 := s2.PointFromLatLng(ll17)
point18 := s2.PointFromLatLng(ll18)
point19 := s2.PointFromLatLng(ll19)
points := []s2.Point{}
points = append(points, point19)
points = append(points, point18)
points = append(points, point17)
points = append(points, point16)
points = append(points, point15)
points = append(points, point14)
points = append(points, point13)
points = append(points, point12)
points = append(points, point11)
points = append(points, point10)
points = append(points, point9)
points = append(points, point8)
points = append(points, point7)
points = append(points, point6)
points = append(points, point5)
points = append(points, point4)
points = append(points, point3)
points = append(points, point2)
points = append(points, point1)
loop := s2.LoopFromPoints(points)
fmt.Println("---- loop search (gets too
much) -----")
// fmt.Printf("Some loop status items: empty:%t full:%t
", loop.IsEmpty(),
loop.IsFull())
// ref: https://github.com/golang/geo/issues/14#issuecomment-257064823
defaultCoverer := &s2.RegionCoverer{MaxLevel: 20,
MaxCells: 1000, MinLevel: 1}
// rg := s2.Region(loop.CapBound())
// cvr := defaultCoverer.Covering(rg)
cvr := defaultCoverer.Covering(loop)
// fmt.Println(poly.CapBound())
for _, c3 :=
range cvr {
fmt.Printf("%d,
", c3)
}
}
这里用到了 Loop 类,这个类的初始化的最小单元是 Point,Point 是由经纬度产生的。最重要的一点需要注意的是,多边形是按照逆时针方向,左手边区域确定的。
如果一不小心点是按照顺时针排列的话,那么多边形确定的是外层更大的面,意味着球面除去画的这个多边形以外的都是你想要的多边形。举个具体的例子,假如我们想要画的多边形是下图这个样子的:
如果我们用顺时针的方式依次存储 Point 的话,并用顺时针的这个数组去初始化 Loop,那么就会出现“奇怪”的现象。如下图:
这张图左上角的顶点和右下角的顶点在地球上是重合的。如果把这个地图重新还原成球面,那么就是整个球面中间挖空了一个多边形。
把上图放大,如下图:
这样就可以很清晰的看到了,中间被挖空了一个多边形。造成这种现象的原因就是按照顺时针的方向存储了每个点,那么初始化一个 Loop 的时候就会选择多边形外圈的更大的多边形。
使用 Loop 一定要切记,顺时针表示的是外圈多边形,逆时针表示的是内圈多边形。多边形覆盖的问题同之前举的例子一样:相同的 MaxLevel = 20,MinLevel = 1,MaxCells 不同,覆盖的精度就不同,下图是 MaxCells = 100 的情况:
下图是 MaxCells = 1000 的情况:
6. S2的应用
S2 主要能用在以下 8 个地方:涉及到角度,间隔,纬度经度点,单位矢量等的表示,以及对这些类型的各种操作。单位球体上的几何形状,如球冠(“圆盘”),纬度 - 经度矩形,折线和多边形。支持点,折线和多边形的任意集合的强大的构造操作(例如联合)和布尔谓词(例如,包含)。对点,折线和多边形的集合进行快速的内存索引。针对测量距离和查找附近物体的算法。用于捕捉和简化几何的稳健算法(该算法具有精度和拓扑保证)。用于测试几何对象之间关系的有效且精确的数学谓词的集合。支持空间索引,包括将区域近似为离散“S2单元”的集合。此功能可以轻松构建大型分布式空间索引。最后一点空间索引相信在工业生产中使用的非常广泛。S2 目前应用比较多,用在和地图相关业务上更多。Google Map 就直接大量使用了 S2 ,速度有多快读者可以自己体验体验。Uber 在搜寻最近的出租车也是用的 S2 算法进行计算的。场景的例子就是本篇文章引语里面提到的场景。滴滴应该也有相关的应用,也许有更加优秀的解法。现在很火的共享单车也会用到这些空间索引算法。最后就是外卖行业和地图关联也很密切。美团和饿了么相信也在这方面有很多应用,具体哪里用到了,就请读者自己想象吧。当然 S2 也有不适合的使用场景:平面几何问题(有许多精细的现有平面几何图库可供选择)。转换常见的 to/from GIS格式(要阅读这种格式,请使用OGR等外部库)。
五. 最后
本篇文章里面着重介绍了谷歌的 S2 算法的基础实现。虽然 Geohash 也是空间点索引算法,但是性能方面比谷歌的 S2 略逊一筹。并且大公司的数据库也基本上开始采用谷歌的 S2 算法进行索引。
关于空间搜索其实还有一大类问题,如何搜索多维空间线,多维空间面,多维空间多边形呢?他们都是由无数个空间点组成的。实际的例子,比如街道,高楼,铁路,河流。要搜索这些东西,数据库表如何设计?如何做到高效的搜索呢?还能用 B+ 树来做么?答案当然是也可以实现高效率的搜索,那就需要用到 R 树,或者 R 树 和 B+树。这部分就不在本文的范畴内了,可参考《多维空间多边形索引算法》。
GitHub Repo:Halfrost-Field
Follow: halfrost · GitHub
Source: https://halfrost.com/go_spatial_search/