• spark SQL学习(综合案例-日志分析)


    日志分析

    
    scala> import org.apache.spark.sql.types._
    scala> import org.apache.spark.sql.Row
    
    
    scala> val logRDD = sc.textFile("hdfs://master:9000/student/2016113012/data/log.txt").map(_.split("#"))
    logRDD: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[2] at map at <console>:21
    
    
    val schema = StructType(
        Array(
            StructField("ipAddress",StringType,true),
            StructField("clientIndentd",StringType,true),
            StructField("userId",StringType,true),
            StructField("dateTime",StringType,true),
            StructField("protocal",StringType,true),
            StructField("responseCode",StringType,true),
            StructField("contentSize",IntegerType,true)
    
        )
    
    )
    
    
    val rowRDD = logRDD.map(p => Row(p(0),p(1),p(2),p(3),p(4),p(5),p(6).toInt))
    val logDF = sqlContext.createDataFrame(rowRDD,schema)
    logDF.registerTempTable("logs")
    
    //统计访问文件大小的平均值,最大值,最小值
    scala> sqlContext.sql("select avg(contentSize),min(contentSize),max(contentSize) from logs").show()
    17/03/07 17:04:20 INFO ParseDriver: Parsing command: select avg(contentSize),min(contentSize),max(contentSize) from logs
    17/03/07 17:04:20 INFO ParseDriver: Parse Completed
    17/03/07 17:04:21 INFO FileInputFormat: Total input paths to process : 1
    17/03/07 17:04:22 INFO deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
    17/03/07 17:04:22 INFO deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
    17/03/07 17:04:22 INFO deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
    17/03/07 17:04:22 INFO deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
    17/03/07 17:04:22 INFO deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
    +------+----+----+
    |   _c0| _c1| _c2|
    +------+----+----+
    |3506.0|2000|5554|
    +------+----+----+
    
    //统计响应代码的数量
    scala> sqlContext.sql("select responseCode,count(*) from logs group by responseCode").show()
    17/03/07 17:52:26 INFO ParseDriver: Parsing command: select responseCode,count(*) from logs group by responseCode
    17/03/07 17:52:26 INFO ParseDriver: Parse Completed
    +------------+---+                                                              
    |responseCode|_c1|
    +------------+---+
    |         304|  1|
    |         200|  2|
    +------------+---+
    
    //统计大于1次的ip地址
    scala> sqlContext.sql("select ipAddress,count(1) as total  from logs group by ipAddress having total > 1").show()
    17/03/07 17:55:20 INFO ParseDriver: Parsing command: select ipAddress,count(1) as total  from logs group by ipAddress having total > 1
    17/03/07 17:55:20 INFO ParseDriver: Parse Completed
    +----------+-----+                                                              
    | ipAddress|total|
    +----------+-----+
    |10.0.0.153|    3|
    +----------+-----+
    
    
    
    

    问题:如何将p(4)里面的继续切分

  • 相关阅读:
    promise的终止调用方法:
    (五)浅谈测试用例
    (四)一个bug的生命周期
    (三)趣谈软件需求分析
    (二)软件测试分类
    (一) 软件测试实质
    【转载—“光荣之路”公众号】Bug预防体系(上千bug分析后总结的最佳实践)
    <MFC>FILE的操作
    <CAN>测试的原理
    <C++>消息循环
  • 原文地址:https://www.cnblogs.com/wujiadong2014/p/6516658.html
Copyright © 2020-2023  润新知