Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
C++实现代码:
#include<iostream> using namespace std; class Solution { public: // 关键是在于找到规律: // 即第i块地方的存水量 = min(第i块左边最高的bar高度, 第i块右边最高的bar的高度) - 第i块地方bar的高度 // 例如图中,第5块地方的存水量 = min(2,3)-0 = 2 // 2为其左边最高的bar,即第3块地方的bar // 3为其右边最高的bar,即第7块地方的bar, // 0为其自身的bar高度 int trap(int A[], int n) { if(n==0) return 0; int left[n]; int right[n]; int i; int sum=0; left[0]=A[0]; for(i=1;i<n;i++) left[i]=max(left[i-1],A[i]); right[n-1]=A[n-1]; for(i=n-2;i>=0;i--) right[i]=max(right[i+1],A[i]);
//注意边界不用最后一个和第一个都不需要 for(i=1;i<n-1;i++) sum+=(min(left[i],right[i])-A[i]); return sum; } }; int main() { Solution s; int A[12]={0,1,0,2,1,0,1,3,2,1,2,1}; cout<<s.trap(A,12)<<endl; }
参考:http://blog.csdn.net/fightforyourdream/article/details/15026089