• 《转》精巧好用的DelayQueue


    该文章转自:http://www.cnblogs.com/jobs/archive/2007/04/27/730255.html

    我们谈一下实际的场景吧。我们在开发中,有如下场景

    a) 关闭空闲连接。服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之。
    b) 缓存。缓存中的对象,超过了空闲时间,需要从缓存中移出。
    c) 任务超时处理。在网络协议滑动窗口请求应答式交互时,处理超时未响应的请求。

    一种笨笨的办法就是,使用一个后台线程,遍历所有对象,挨个检查。这种笨笨的办法简单好用,但是对象数量过多时,可能存在性能问题,检查间隔时间不好设置,间隔时间过大,影响精确度,多小则存在效率问题。而且做不到按超时的时间顺序处理。 

    这场景,使用DelayQueue最适合了。

    DelayQueue是java.util.concurrent中提供的一个很有意思的类。很巧妙,非常棒!但是java doc和Java SE 5.0的source中都没有提供Sample。我最初在阅读ScheduledThreadPoolExecutor源码时,发现DelayQueue的妙用。随后在实际工作中,应用在session超时管理,网络应答通讯协议的请求超时处理。

    本文将会对DelayQueue做一个介绍,然后列举应用场景。并且提供一个Delayed接口的实现和Sample代码。

    DelayQueue是一个BlockingQueue,其特化的参数是Delayed。(不了解BlockingQueue的同学,先去了解BlockingQueue再看本文)
    Delayed扩展了Comparable接口,比较的基准为延时的时间值,Delayed接口的实现类getDelay的返回值应为固定值(final)。DelayQueue内部是使用PriorityQueue实现的。

    DelayQueue = BlockingQueue + PriorityQueue + Delayed

    DelayQueue的关键元素BlockingQueue、PriorityQueue、Delayed。可以这么说,DelayQueue是一个使用优先队列(PriorityQueue)实现的BlockingQueue,优先队列的比较基准值是时间。

    他们的基本定义如下

    public interface Comparable<T> {
        public int compareTo(T o);
    }
    
    public interface Delayed extends Comparable<Delayed> {
        long getDelay(TimeUnit unit);
    }
    

      

    public class DelayQueue<E extends Delayed> implements BlockingQueue<E> { 
        private final PriorityQueue<E> q = new PriorityQueue<E>();
    }
    

    DelayQueue内部的实现使用了一个优先队列。当调用DelayQueue的offer方法时,把Delayed对象加入到优先队列q中。如下:

     1 public boolean offer(E e) {
     2     final ReentrantLock lock = this.lock;
     3     lock.lock();
     4     try {
     5         E first = q.peek();
     6         q.offer(e);
     7         if (first == null || e.compareTo(first) < 0)
     8             available.signalAll();
     9         return true;
    10     } finally {
    11         lock.unlock();
    12     }
    13 }

    DelayQueue的take方法,把优先队列q的first拿出来(peek),如果没有达到延时阀值,则进行await处理。如下:

     1 public E take() throws InterruptedException {
     2     final ReentrantLock lock = this.lock;
     3     lock.lockInterruptibly();
     4     try {
     5         for (;;) {
     6             E first = q.peek();
     7             if (first == null) {
     8                 available.await();
     9             } else {
    10                 long delay =  first.getDelay(TimeUnit.NANOSECONDS);
    11                 if (delay > 0) {
    12                     long tl = available.awaitNanos(delay);
    13                 } else {
    14                     E x = q.poll();
    15                     assert x != null;
    16                     if (q.size() != 0)
    17                         available.signalAll(); // wake up other takers
    18                     return x;
    19 
    20                 }
    21             }
    22         }
    23     } finally {
    24         lock.unlock();
    25     }
    26 }

    以下是Sample,是一个缓存的简单实现。共包括三个类Pair、DelayItem、Cache。如下:

     1 public class Pair<K, V> {
     2     public K first;
     3 
     4     public V second;
     5     
     6     public Pair() {}
     7     
     8     public Pair(K first, V second) {
     9         this.first = first;
    10         this.second = second;
    11     }
    12 }

    以下是Delayed的实现

     1 import java.util.concurrent.Delayed;
     2 import java.util.concurrent.TimeUnit;
     3 import java.util.concurrent.atomic.AtomicLong;
     4 
     5 public class DelayItem<T> implements Delayed {
     6     /** Base of nanosecond timings, to avoid wrapping */
     7     private static final long NANO_ORIGIN = System.nanoTime();
     8 
     9     /**
    10      * Returns nanosecond time offset by origin
    11      */
    12     final static long now() {
    13         return System.nanoTime() - NANO_ORIGIN;
    14     }
    15 
    16     /**
    17      * Sequence number to break scheduling ties, and in turn to guarantee FIFO order among tied
    18      * entries.
    19      */
    20     private static final AtomicLong sequencer = new AtomicLong(0);
    21 
    22     /** Sequence number to break ties FIFO */
    23     private final long sequenceNumber;
    24 
    25     /** The time the task is enabled to execute in nanoTime units */
    26     private final long time;
    27 
    28     private final T item;
    29 
    30     public DelayItem(T submit, long timeout) {
    31         this.time = now() + timeout;
    32         this.item = submit;
    33         this.sequenceNumber = sequencer.getAndIncrement();
    34     }
    35 
    36     public T getItem() {
    37         return this.item;
    38     }
    39 
    40     public long getDelay(TimeUnit unit) {
    41         long d = unit.convert(time - now(), TimeUnit.NANOSECONDS);
    42         return d;
    43     }
    44 
    45     public int compareTo(Delayed other) {
    46         if (other == this) // compare zero ONLY if same object
    47             return 0;
    48         if (other instanceof DelayItem) {
    49             DelayItem x = (DelayItem) other;
    50             long diff = time - x.time;
    51             if (diff < 0)
    52                 return -1;
    53             else if (diff > 0)
    54                 return 1;
    55             else if (sequenceNumber < x.sequenceNumber)
    56                 return -1;
    57             else
    58                 return 1;
    59         }
    60         long d = (getDelay(TimeUnit.NANOSECONDS) - other.getDelay(TimeUnit.NANOSECONDS));
    61         return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
    62     }
    63 }

    以下是Cache的实现,包括了put和get方法,还包括了可执行的main函数。

     1 import java.util.concurrent.ConcurrentHashMap;
     2 import java.util.concurrent.ConcurrentMap;
     3 import java.util.concurrent.DelayQueue;
     4 import java.util.concurrent.TimeUnit;
     5 import java.util.logging.Level;
     6 import java.util.logging.Logger;
     7 
     8 public class Cache<K, V> {
     9     private static final Logger LOG = Logger.getLogger(Cache.class.getName());
    10 
    11     private ConcurrentMap<K, V> cacheObjMap = new ConcurrentHashMap<K, V>();
    12 
    13     private DelayQueue<DelayItem<Pair<K, V>>> q = new DelayQueue<DelayItem<Pair<K, V>>>();
    14 
    15     private Thread daemonThread;
    16 
    17     public Cache() {
    18 
    19         Runnable daemonTask = new Runnable() {
    20             public void run() {
    21                 daemonCheck();
    22             }
    23         };
    24 
    25         daemonThread = new Thread(daemonTask);
    26         daemonThread.setDaemon(true);
    27         daemonThread.setName("Cache Daemon");
    28         daemonThread.start();
    29     }
    30 
    31     private void daemonCheck() {
    32 
    33         if (LOG.isLoggable(Level.INFO))
    34             LOG.info("cache service started.");
    35 
    36         for (;;) {
    37             try {
    38                 DelayItem<Pair<K, V>> delayItem = q.take();
    39                 if (delayItem != null) {
    40                     // 超时对象处理
    41                     Pair<K, V> pair = delayItem.getItem();
    42                     cacheObjMap.remove(pair.first, pair.second); // compare and remove
    43                 }
    44             } catch (InterruptedException e) {
    45                 if (LOG.isLoggable(Level.SEVERE))
    46                     LOG.log(Level.SEVERE, e.getMessage(), e);
    47                 break;
    48             }
    49         }
    50 
    51         if (LOG.isLoggable(Level.INFO))
    52             LOG.info("cache service stopped.");
    53     }
    54 
    55     // 添加缓存对象
    56     public void put(K key, V value, long time, TimeUnit unit) {
    57         V oldValue = cacheObjMap.put(key, value);
    58         if (oldValue != null)
    59             q.remove(key);
    60 
    61         long nanoTime = TimeUnit.NANOSECONDS.convert(time, unit);
    62         q.put(new DelayItem<Pair<K, V>>(new Pair<K, V>(key, value), nanoTime));
    63     }
    64 
    65     public V get(K key) {
    66         return cacheObjMap.get(key);
    67     }
    68 
    69     // 测试入口函数
    70     public static void main(String[] args) throws Exception {
    71         Cache<Integer, String> cache = new Cache<Integer, String>();
    72         cache.put(1, "aaaa", 3, TimeUnit.SECONDS);
    73 
    74         Thread.sleep(1000 * 2);
    75         {
    76             String str = cache.get(1);
    77             System.out.println(str);
    78         }
    79 
    80         Thread.sleep(1000 * 2);
    81         {
    82             String str = cache.get(1);
    83             System.out.println(str);
    84         }
    85     }
    86 }

    运行Sample,main函数执行的结果是输出两行,第一行为aaa,第二行为null。

  • 相关阅读:
    [题解] uva 247 Calling Circles (floyd判联通/tarjan强连通分量)
    [总结] 最小生成树 minimum spanning tree
    [题解] uva 11865 Stream My Contest (二分+最小树形图)
    [题解] poj 3164 Command Network (朱刘算法 最小树形图(有向生成树))
    [题解] poj 3241 Object Clustering (kruskal曼哈顿距离最小生成树+树状数组)
    [BZOJ2301][HAOI2011]Problem b 莫比乌斯反演+容斥
    [BZOJ1101][POI2007]Zap 莫比乌斯反演
    [BZOJ4006][JLOI2015]管道连接 状压dp+斯坦纳树
    [BZOJ1494][NOI2007]生成树计数 状压dp 并查集
    [BZOJ1076][SCOI2008]奖励关 状压dp
  • 原文地址:https://www.cnblogs.com/wubingshenyin/p/4497346.html
Copyright © 2020-2023  润新知