Overview
- 整个项目的整体架构如下:
- 关于SparkStreaming的部分:
- Flume传数据到SparkStreaming:为了简单使用的是push-based的方式。这种方式可能会丢失数据,但是简单。
- SparkStreaming因为micro-batch的架构,跟我们这个实时热点的应用还是比较契合的。
- SparkStreaming这边是基于sliding window实现实时热搜的,batch interval待定(1min左右),window也待定(3~N* batch interval),slide就等于batch interval。
Step1:Flume Configuration
- Flume端将之前的配置扩展成多channel + 多sink,即sink到HDFS和Spark Streaming。关于Hadoop端的配置,参见Nginx+Flume+Hadoop日志分析,Ngram+AutoComplete
- Flume + SparkStreaming的集成这部分,暂时选用push-based的方法。简单,但容错性不行。
Flume多channel&多sink
- 首先,Flume支持多channel+多sink;
- 具体的实现:
- 在channels和sinks下面加上要add的channel和sink即可
-
clusterLogAgent.sinks = HDFS sink2 clusterLogAgent.channels = ch1 ch2
-
- 确定所选用的selector:
- 关于selector,我们之前在flume源码解读篇中有了解到,这里选择的是replicating的selector,也就是把source中的events复制到各个channels中。
- 这个多sink应该还是配在hadoop cluster端,一个avro sink加一个hdfs sink。要是配在web server端理论上还要浪费网络带宽。
- 在channels和sinks下面加上要add的channel和sink即可
- 用FlumeEventCount.scala测试了下,一切ok,如下~
- web server端运行 bin/flume-ng agent -n WebAccLo-c conf -f conf/flume-avro.conf
- spark端运行 ./bin/spark-submit --class com.wttttt.spark.FlumeEventCount --master yarn --deploy-mode client --driver-memory 1g --executor-memory 1g --executor-cores 2 /home/hhh/RealTimeLog.jar 10.3.242.99 4545 30000
------------------------------------------- Time: 1495098360000 ms ------------------------------------------- Received 10 flume events. 17/05/18 17:06:00 INFO JobScheduler: Finished job streaming job 1495098360000 ms.0 from job set of time 1495098360000 ms 17/05/18 17:06:00 INFO JobScheduler: Total delay: 0.298 s for time 1495098360000 ms (execution: 0.216 s) 17/05/18 17:06:00 INFO ReceivedBlockTracker: Deleting batches: 17/05/18 17:06:00 INFO InputInfoTracker: remove old batch metadata: 17/05/18 17:06:13 INFO BlockManagerInfo: Added input-0-1495098373000 in memory on host99:42342 (size: 319.0 B, free: 366.3 MB) 17/05/18 17:06:17 INFO BlockManagerInfo: Added input-0-1495098377200 in memory on host99:42342 (size: 620.0 B, free: 366.3 MB) 17/05/18 17:06:20 INFO BlockManagerInfo: Added input-0-1495098380400 in memory on host99:42342 (size: 620.0 B, free: 366.3 MB) 17/05/18 17:06:30 INFO JobScheduler: Added jobs for time 1495098390000 ms 17/05/18 17:06:30 INFO JobScheduler: Starting job streaming job 1495098390000 ms.0 from job set of time 1495098390000 ms 17/05/18 17:06:30 INFO SparkContext: Starting job: print at FlumeEventCount.scala:30 17/05/18 17:06:30 INFO DAGScheduler: Registering RDD 14 (union at DStream.scala:605) 17/05/18 17:06:30 INFO DAGScheduler: Got job 4 (print at FlumeEventCount.scala:30) with 1 output partitions 17/05/18 17:06:30 INFO DAGScheduler: Final stage: ResultStage 8 (print at FlumeEventCount.scala:30) 17/05/18 17:06:30 INFO DAGScheduler: Parents of final stage: List(ShuffleMapStage 7) 17/05/18 17:06:30 INFO DAGScheduler: Missing parents: List(ShuffleMapStage 7) 17/05/18 17:06:30 INFO DAGScheduler: Submitting ShuffleMapStage 7 (UnionRDD[14] at union at DStream.scala:605), which has no missing parents 17/05/18 17:06:30 INFO MemoryStore: Block broadcast_8 stored as values in memory (estimated size 3.3 KB, free 399.5 MB) 17/05/18 17:06:30 INFO MemoryStore: Block broadcast_8_piece0 stored as bytes in memory (estimated size 2.0 KB, free 399.5 MB) 17/05/18 17:06:30 INFO BlockManagerInfo: Added broadcast_8_piece0 in memory on 10.3.242.99:36107 (size: 2.0 KB, free: 399.6 MB) 17/05/18 17:06:30 INFO SparkContext: Created broadcast 8 from broadcast at DAGScheduler.scala:996 17/05/18 17:06:30 INFO DAGScheduler: Submitting 4 missing tasks from ShuffleMapStage 7 (UnionRDD[14] at union at DStream.scala:605) 17/05/18 17:06:30 INFO YarnScheduler: Adding task set 7.0 with 4 tasks 17/05/18 17:06:30 INFO TaskSetManager: Starting task 0.0 in stage 7.0 (TID 88, host99, executor 1, partition 0, NODE_LOCAL, 7290 bytes) 17/05/18 17:06:30 INFO TaskSetManager: Starting task 3.0 in stage 7.0 (TID 89, host101, executor 2, partition 3, PROCESS_LOCAL, 7470 bytes) 17/05/18 17:06:30 INFO BlockManagerInfo: Added broadcast_8_piece0 in memory on host99:42342 (size: 2.0 KB, free: 366.3 MB) 17/05/18 17:06:30 INFO BlockManagerInfo: Added broadcast_8_piece0 in memory on host101:45692 (size: 2.0 KB, free: 366.3 MB) 17/05/18 17:06:30 INFO TaskSetManager: Starting task 1.0 in stage 7.0 (TID 90, host99, executor 1, partition 1, NODE_LOCAL, 7290 bytes) 17/05/18 17:06:30 INFO TaskSetManager: Finished task 0.0 in stage 7.0 (TID 88) in 22 ms on host99 (executor 1) (1/4) 17/05/18 17:06:30 INFO TaskSetManager: Finished task 3.0 in stage 7.0 (TID 89) in 27 ms on host101 (executor 2) (2/4) 17/05/18 17:06:30 INFO TaskSetManager: Starting task 2.0 in stage 7.0 (TID 91, host99, executor 1, partition 2, NODE_LOCAL, 7290 bytes) 17/05/18 17:06:30 INFO TaskSetManager: Finished task 1.0 in stage 7.0 (TID 90) in 12 ms on host99 (executor 1) (3/4) 17/05/18 17:06:30 INFO TaskSetManager: Finished task 2.0 in stage 7.0 (TID 91) in 11 ms on host99 (executor 1) (4/4) 17/05/18 17:06:30 INFO YarnScheduler: Removed TaskSet 7.0, whose tasks have all completed, from pool 17/05/18 17:06:30 INFO DAGScheduler: ShuffleMapStage 7 (union at DStream.scala:605) finished in 0.045 s 17/05/18 17:06:30 INFO DAGScheduler: looking for newly runnable stages 17/05/18 17:06:30 INFO DAGScheduler: running: Set(ResultStage 2) 17/05/18 17:06:30 INFO DAGScheduler: waiting: Set(ResultStage 8) 17/05/18 17:06:30 INFO DAGScheduler: failed: Set() 17/05/18 17:06:30 INFO DAGScheduler: Submitting ResultStage 8 (MapPartitionsRDD[17] at map at FlumeEventCount.scala:30), which has no missing parents 17/05/18 17:06:30 INFO MemoryStore: Block broadcast_9 stored as values in memory (estimated size 3.8 KB, free 399.5 MB) 17/05/18 17:06:30 INFO MemoryStore: Block broadcast_9_piece0 stored as bytes in memory (estimated size 2.1 KB, free 399.5 MB) 17/05/18 17:06:30 INFO BlockManagerInfo: Added broadcast_9_piece0 in memory on 10.3.242.99:36107 (size: 2.1 KB, free: 399.6 MB) 17/05/18 17:06:30 INFO SparkContext: Created broadcast 9 from broadcast at DAGScheduler.scala:996 17/05/18 17:06:30 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 8 (MapPartitionsRDD[17] at map at FlumeEventCount.scala:30) 17/05/18 17:06:30 INFO YarnScheduler: Adding task set 8.0 with 1 tasks 17/05/18 17:06:30 INFO TaskSetManager: Starting task 0.0 in stage 8.0 (TID 92, host101, executor 2, partition 0, NODE_LOCAL, 7069 bytes) 17/05/18 17:06:30 INFO BlockManagerInfo: Added broadcast_9_piece0 in memory on host101:45692 (size: 2.1 KB, free: 366.3 MB) 17/05/18 17:06:30 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 2 to 10.3.242.101:41672 17/05/18 17:06:30 INFO MapOutputTrackerMaster: Size of output statuses for shuffle 2 is 164 bytes 17/05/18 17:06:30 INFO TaskSetManager: Finished task 0.0 in stage 8.0 (TID 92) in 26 ms on host101 (executor 2) (1/1) 17/05/18 17:06:30 INFO YarnScheduler: Removed TaskSet 8.0, whose tasks have all completed, from pool 17/05/18 17:06:30 INFO DAGScheduler: ResultStage 8 (print at FlumeEventCount.scala:30) finished in 0.027 s 17/05/18 17:06:30 INFO DAGScheduler: Job 4 finished: print at FlumeEventCount.scala:30, took 0.089621 s 17/05/18 17:06:30 INFO SparkContext: Starting job: print at FlumeEventCount.scala:30 17/05/18 17:06:30 INFO DAGScheduler: Got job 5 (print at FlumeEventCount.scala:30) with 3 output partitions 17/05/18 17:06:30 INFO DAGScheduler: Final stage: ResultStage 10 (print at FlumeEventCount.scala:30) 17/05/18 17:06:30 INFO DAGScheduler: Parents of final stage: List(ShuffleMapStage 9) 17/05/18 17:06:30 INFO DAGScheduler: Missing parents: List() 17/05/18 17:06:30 INFO DAGScheduler: Submitting ResultStage 10 (MapPartitionsRDD[17] at map at FlumeEventCount.scala:30), which has no missing parents 17/05/18 17:06:30 INFO MemoryStore: Block broadcast_10 stored as values in memory (estimated size 3.8 KB, free 399.5 MB) 17/05/18 17:06:30 INFO MemoryStore: Block broadcast_10_piece0 stored as bytes in memory (estimated size 2.1 KB, free 399.5 MB) 17/05/18 17:06:30 INFO BlockManagerInfo: Added broadcast_10_piece0 in memory on 10.3.242.99:36107 (size: 2.1 KB, free: 399.6 MB) 17/05/18 17:06:30 INFO SparkContext: Created broadcast 10 from broadcast at DAGScheduler.scala:996 17/05/18 17:06:30 INFO DAGScheduler: Submitting 3 missing tasks from ResultStage 10 (MapPartitionsRDD[17] at map at FlumeEventCount.scala:30) 17/05/18 17:06:30 INFO YarnScheduler: Adding task set 10.0 with 3 tasks 17/05/18 17:06:30 INFO TaskSetManager: Starting task 0.0 in stage 10.0 (TID 93, host99, executor 1, partition 1, PROCESS_LOCAL, 7069 bytes) 17/05/18 17:06:30 INFO TaskSetManager: Starting task 1.0 in stage 10.0 (TID 94, host101, executor 2, partition 2, PROCESS_LOCAL, 7069 bytes) 17/05/18 17:06:30 INFO TaskSetManager: Starting task 2.0 in stage 10.0 (TID 95, host101, executor 2, partition 3, PROCESS_LOCAL, 7069 bytes) 17/05/18 17:06:30 INFO BlockManagerInfo: Added broadcast_10_piece0 in memory on host99:42342 (size: 2.1 KB, free: 366.3 MB) 17/05/18 17:06:30 INFO BlockManagerInfo: Added broadcast_10_piece0 in memory on host101:45692 (size: 2.1 KB, free: 366.3 MB) 17/05/18 17:06:30 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 2 to 10.3.242.99:35937 17/05/18 17:06:30 INFO TaskSetManager: Finished task 0.0 in stage 10.0 (TID 93) in 19 ms on host99 (executor 1) (1/3) 17/05/18 17:06:30 INFO TaskSetManager: Finished task 2.0 in stage 10.0 (TID 95) in 21 ms on host101 (executor 2) (2/3) 17/05/18 17:06:30 INFO TaskSetManager: Finished task 1.0 in stage 10.0 (TID 94) in 22 ms on host101 (executor 2) (3/3) 17/05/18 17:06:30 INFO YarnScheduler: Removed TaskSet 10.0, whose tasks have all completed, from pool 17/05/18 17:06:30 INFO DAGScheduler: ResultStage 10 (print at FlumeEventCount.scala:30) finished in 0.025 s 17/05/18 17:06:30 INFO DAGScheduler: Job 5 finished: print at FlumeEventCount.scala:30, took 0.032431 s ------------------------------------------- Time: 1495098390000 ms ------------------------------------------- Received 5 flume events.
- 下一步会用Flume先做一次filter,去除掉没有搜索记录的log event。
Step2:Spark Streaming
- Spark Streaming这边只要编写程序:
- new一个StreamingContext
- FlumeUtils.createStream接收Flume传过来的events
- mapPartitions(优化):对每个partiiton建一个Pattern和hashMap
- reduceByKeyAndWindow(优化): 滑动窗口对hashMap的相同key进行加减
- sortByKey: sort之后取前N个
- 基于上述方式,现在本地作测试:
- sparkStreaming处理:
-
object LocalTest { val logger = LoggerFactory.getLogger("LocalTest") def main(args: Array[String]) { val batchInterval = Milliseconds(10000) val slideInterval = Milliseconds(5000) val conf = new SparkConf() .setMaster("local[2]") .setAppName("LocalTest") // WARN StreamingContext: spark.master should be set as local[n], n > 1 in local mode if you have receivers to get data, // otherwise Spark jobs will not get resources to process the received data. val sc = new StreamingContext(conf, Milliseconds(5000)) sc.checkpoint("flumeCheckpoint/") val stream = sc.socketTextStream("localhost", 9998) val counts = stream.mapPartitions{ events => val pattern = Pattern.compile("\?Input=[^\s]*\s") val map = new mutable.HashMap[String, Int]() logger.info("Handling events, events is empty: " + events.isEmpty) while (events.hasNext){ // par is an Iterator!!! val line = events.next() val m = pattern.matcher(line) if (m.find()) { val words = line.substring(m.start(), m.end()).split("=")(1).toLowerCase() logger.info(s"Processing words $words") map.put(words, map.getOrElse(words, 0) + 1) } } map.iterator } val window = counts.reduceByKeyAndWindow(_+_, _-_, batchInterval, slideInterval) // window.print() // transform和它的变体trnasformWith运行在DStream上任意的RDD-to-RDD函数; // 可以用来使用那些不包含在DStrema API中RDD操作 val sorted = window.transform(rdd =>{ val sortRdd = rdd.map(t => (t._2, t._1)).sortByKey(false).map(t => (t._2, t._1)) val more = sortRdd.take(2) more.foreach(println) sortRdd }) sorted.print() sc.start() sc.awaitTermination() } }
- 同时,另外运行一个程序,产生log,并向9998端口发送:
-
object GenerateChar { def main(args: Array[String]) { val listener = new ServerSocket(9998) while(true){ val socket = listener.accept() new Thread(){ override def run() = { println("Got client connected from :"+ socket.getInetAddress) val out = new PrintWriter(socket.getOutputStream,true) while(true){ Thread.sleep(3000) val context1 = "GET /result.html?Input=test1 HTTP/1.1" println(context1) val context2 = "GET /result.html?Input=test2 HTTP/1.1" println(context2) val context3 = "GET /result.html?Input=test3 HTTP/1.1" println(context3) out.write(context1 + ' ' + context2 + " " + context2 + " " + context3 + " " + context3 + " " + context3 + " " + context3 + " ") out.flush() } socket.close() } }.start() } } }
- 以上,本地完全没有问题。但是!!!一打包到集群,就各种bug,没有输出。打的logger info也没有输出,System.out.println也没有(stdout文件为空...)。而且会报错shuffleException。
- 基于上述问题,google了很多都说是内存的问题,但是我的数据量已经不能更小了... 我又测试了下在集群上跑,但不连flume,而是在driver本地跑了个generateLog的程序向9998端口发数据。事实是仍然可能报错如下:
-
17/05/24 15:07:17 ERROR ShuffleBlockFetcherIterator: Failed to get block(s) from host101:37940 java.io.IOException: Failed to connect to host101/10.3.242.101:37940
但是结果是正确的...
-
TODO
- 整个架构还有很多可改进的地方。因为我现在只剩两台机器了,就先不折腾了。 - -
- 其中最大的问题还是容错:
- flume是push-based,所以一旦有events冲击波,HDFS可能负载不了高强度的写操作,从而出问题;
- spark-streaming那边因为也是直接使用这种push-based(没有定制receiver,我嫌麻烦),所以也会有问题。
- 后续的话,还是要使用经典的Kafka + Flume的架构。