• 平衡二叉树


    #include <iostream>

    #include <algorithm>

    using namespace std;

    //平衡二叉树结点

    template <typename T>

    struct AvlNode

    {

        T data;

        int height; //结点所在高度

        AvlNode<T> *left;

        AvlNode<T> *right;

        AvlNode<T>(const T theData) : data(theData), left(NULL), right(NULL), height(0){}

    };

     

    //AvlTree

    template <typename T>

    class AvlTree

    {

    public:

        AvlTree<T>(){}

        ~AvlTree<T>(){}

        AvlNode<T> *root;

        //插入结点

        void Insert(AvlNode<T> *&t, T x);

        //删除结点

        bool Delete(AvlNode<T> *&t, T x);

        //查找是否存在给定值的结点

        bool Contains(AvlNode<T> *t, const T x) const;

        //中序遍历

        void InorderTraversal(AvlNode<T> *t);

        //前序遍历

        void PreorderTraversal(AvlNode<T> *t);

        //最小值结点

        AvlNode<T> *FindMin(AvlNode<T> *t) const;

        //最大值结点

        AvlNode<T> *FindMax(AvlNode<T> *t) const;

    private:

        //求树的高度

        int GetHeight(AvlNode<T> *t);

        //单旋转 左

        AvlNode<T> *LL(AvlNode<T> *t);

        //单旋转 右

        AvlNode<T> *RR(AvlNode<T> *t);

        //双旋转 右左

        AvlNode<T> *LR(AvlNode<T> *t);

        //双旋转 左右

        AvlNode<T> *RL(AvlNode<T> *t);

    };

     

    template <typename T>

    AvlNode<T> * AvlTree<T>::FindMax(AvlNode<T> *t) const

    {

        if (t == NULL)

            return NULL;

        if (t->right == NULL)

            return t;

        return FindMax(t->right);

    }

     

    template <typename T>

    AvlNode<T> * AvlTree<T>::FindMin(AvlNode<T> *t) const

    {

        if (t == NULL)

            return NULL;

        if (t->left == NULL)

            return t;

        return FindMin(t->left);

    }

     

     

    template <typename T>

    int AvlTree<T>::GetHeight(AvlNode<T> *t)

    {

        if (t == NULL)

            return -1;

        else

            return t->height;

    }

     

     

    //单旋转

    //左左插入导致的不平衡

    template <typename T>

    AvlNode<T> * AvlTree<T>::LL(AvlNode<T> *t)

    {

        AvlNode<T> *q = t->left;

        t->left = q->right;

        q->right = t;

        t = q;

        t->height = max(GetHeight(t->left), GetHeight(t->right)) + 1;

        q->height = max(GetHeight(q->left), GetHeight(q->right)) + 1;

        return q;

    }

     

    //单旋转

    //右右插入导致的不平衡

    template <typename T>

    AvlNode<T> * AvlTree<T>::RR(AvlNode<T> *t)

    {

        AvlNode<T> *q = t->right;

        t->right = q->left;

        q->left = t;

        t = q;

        t->height = max(GetHeight(t->left), GetHeight(t->right)) + 1;

        q->height = max(GetHeight(q->left), GetHeight(q->right)) + 1;

        return q;

    }

     

    //双旋转

    //插入点位于t的左儿子的右子树

    template <typename T>

    AvlNode<T>* AvlTree<T>::LR(AvlNode<T> *t)

    {

    //双旋转可以通过两次单旋转实现

    //对t的左结点进行RR旋转,再对根节点进行LL旋转

    AvlNode<T> * q = RR(t->left);

    t->left = q;

    return LL(t);

    }

     

    //双旋转

    //插入点位于t的右儿子的左子树

    template <typename T>

    AvlNode<T> * AvlTree<T>::RL(AvlNode<T> *t)

    {

    AvlNode<T> *q = LL(t->right);

    t->right = q;

    return RR(t);

    }

     

     

    template <typename T>

    void AvlTree<T>::Insert(AvlNode<T> *&t, T x)

    {

        if (t == NULL)

            t = new AvlNode<T>(x);

        else if (x < t->data)

        {

            Insert(t->left, x);

            //判断平衡情况

            if (GetHeight(t->left) - GetHeight(t->right) > 1)

            {

                //分两种情况 左左或左右

     

                if (x < t->left->data)//左左

                    t = LL(t);

                else                  //左右

                    t = LR(t);

            }

        }

        else if (x > t->data)

        {

            Insert(t->right, x);

            if (GetHeight(t->right) - GetHeight(t->left) > 1)

            {

                if (x > t->right->data)

                    t = RR(t);

                else

                    t = RL(t);

            }

        }

        else

            ;//数据重复

        t->height = max(GetHeight(t->left), GetHeight(t->right)) + 1;

    }

     

    template <typename T>

    bool AvlTree<T>::Delete(AvlNode<T> *&t, T x)

    {

        //t为空 未找到要删除的结点

        if (t == NULL)

            return false;

        //找到了要删除的结点

        else if (t->data == x)

        {

            //左右子树都非空

            if (t->left != NULL && t->right != NULL)

            {//在高度更大的那个子树上进行删除操作

     

                //左子树高度大,删除左子树中值最大的结点,将其赋给根结点

                if (GetHeight(t->left) > GetHeight(t->right))

                {

                    t->data = FindMax(t->left)->data;

                    Delete(t->left, t->data);

                }

                else//右子树高度更大,删除右子树中值最小的结点,将其赋给根结点

                {

                    t->data = FindMin(t->right)->data;

                    Delete(t->right, t->data);

                }

            }

            else

            {//左右子树有一个不为空,直接用需要删除的结点的子结点替换即可

                AvlNode<T> *old = t;

                t = t->left ? t->left: t->right;//t赋值为不空的子结点

                delete old;

            }

        }

        else if (x < t->data)//要删除的结点在左子树上

        {

            //递归删除左子树上的结点

            Delete(t->left, x);

            //判断是否仍然满足平衡条件

            if (GetHeight(t->right) - GetHeight(t->left) > 1)

            {

                if (GetHeight(t->right->left) > GetHeight(t->right->right))

                {

                    //RL双旋转

                    t = RL(t);

                }

                else

                {//RR单旋转

                    t = RR(t);

                }

            }

            else//满足平衡条件 调整高度信息

            {

                t->height = max(GetHeight(t->left), GetHeight(t->right)) + 1;

            }

        }

        else//要删除的结点在右子树上

        {

            //递归删除右子树结点

            Delete(t->right, x);

            //判断平衡情况

            if (GetHeight(t->left) - GetHeight(t->right) > 1)

            {

                if (GetHeight(t->left->right) > GetHeight(t->left->left))

                {

                    //LR双旋转

                    t = LR(t);

                }

                else

                {

                    //LL单旋转

                    t = LL(t);

                }

            }

            else//满足平衡性 调整高度

            {

                t->height = max(GetHeight(t->left), GetHeight(t->right)) + 1;

            }

        }

       

        return true;

    }

     

    //查找结点

    template <typename T>

    bool AvlTree<T>::Contains(AvlNode<T> *t, const T x) const

    {

        if (t == NULL)

            return false;

        if (x < t->data)

            return Contains(t->left, x);

        else if (x > t->data)

            return Contains(t->right, x);

        else

            return true;

    }

     

    //中序遍历

    template <typename T>

    void AvlTree<T>::InorderTraversal(AvlNode<T> *t)

    {

        if (t)

        {

            InorderTraversal(t->left);

            cout << t->data << ' ';

            InorderTraversal(t->right);

        }

    }

     

    //前序遍历

    template <typename T>

    void AvlTree<T>::PreorderTraversal(AvlNode<T> *t)

    {

        if (t)

        {

            cout << t->data << ' ';

            PreorderTraversal(t->left);

            PreorderTraversal(t->right);

        }

    }

     

  • 相关阅读:
    经典的阿里前端笔试题
    Javascript之浏览器兼容EventUtil
    Javascript之对象的创建
    奇妙的CSS之CSS3新特性总结
    前端优化之无阻塞加载脚本
    正则表达式规则与常见的正则表达式
    全端工程师
    最全前端面试问题及答案总结--《转载》
    奇妙的CSS之布局与定位
    关于在django框架里取已登录用户名字的问题
  • 原文地址:https://www.cnblogs.com/wtblogwt/p/10585107.html
Copyright © 2020-2023  润新知