题意:
求n行三角形中等边三角形个数,图二的三角形也算。
n<=1e9
思路:
打表找下规律,打表方法:把所有点扔坐标系里n^3爆搜即可
打出来为 1,5,15,35,70,126,210..
没感觉,作差 4, 10, 20, 35, 56, 84
还是没感觉,作差 6, 10, 15, 21, 28
发现此时的差递增1?也就是再作差4, 5, 6, 7是等差数列
也就是再作差1, 1, 1为常数
相当于函数$A_n$求四次导为常数!(如果他是个连续函数的话)
于是我们设$displaystyle A_n = a*n^4+b*n^3+c*n^2+d*n+e$ (别忘记常数)
解出a, b, c, d, e,
然后逆元+O(1)代公式就完事了
打表代码:
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<string> //#include<stack> #include<queue> #include<deque> #include<set> #include<vector> #include<map> #include<functional> #define fst first #define sc second #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define lc root<<1 #define rc root<<1|1 #define lowbit(x) ((x)&(-x)) #define mp make_pair using namespace std; typedef double db; typedef long double ldb; typedef long long ll; typedef unsigned long long ull; typedef pair<int,int> PI; typedef pair<ll,ll> PLL; const db eps = 1e-6; const int mod = 1e9+7; const int maxn = 2e6+100; const int maxm = 2e6+100; const int inf = 0x3f3f3f3f; const db pi = acos(-1.0); vector<pair<double,double> >v; struct point{ double x, y; point(){} point(double a, double b){x = a; y = b;} }; double h = 0.5 *sqrt(3); double len(pair<double,double>a, pair<double,double>b){ return (a.fst-b.fst)*(a.fst-b.fst)+(a.sc-b.sc)*(a.sc-b.sc); } bool eq(double a, double b){ if(fabs(a-b)<1e-6)return true; return false; } int main(){ v.pb(mp(0,0)); for(int i = 1; i <= 2000; i++){ if(i&1){ for(int j = 0; j < i/2+1; j++){ v.pb(mp(j*1.0+0.5,-i*h)); v.pb(mp(-j*1.0-0.5,-i*h)); } } else{ v.pb(mp(0,-i*h)); for(int j = 1; j <= i/2; j++){ v.pb(mp(j*1.0,-i*h)); v.pb(mp(-j*1.0,-i*h)); } } int cnt = 0; for(int j = 0; j < (int)v.size(); j++){ for(int k = j+1; k < (int)v.size(); k++){ for(int g = k+1; g < (int)v.size(); g++){ if(eq(len(v[j],v[k]),len(v[k],v[g]))&&eq(len(v[j],v[k]),len(v[j],v[g])))cnt++; } } } printf("%d ",cnt); } return 0; } /* 3 5 0 4 1 2 3 5 2 2 5 2 1 2 5 10 2 2 3 10 5 1 3 4 6 10 5 3 4 6 8 9 3 1 9 10 5 1 3 6 7 10 */