• 矩阵白化


    矩阵白化

     

    作者:桂。

    时间:2017-04-11  22:08:55

    链接:http://www.cnblogs.com/xingshansi/p/6696793.html 

    声明:欢迎被转载,不过记得注明出处哦~


    前言

    在子空间分析、独立成分分析等应用中,经常用到矩阵白化,这里简单总结一下,主要包括:

      1)满秩矩阵的白化;

      2)秩亏缺矩阵的白化;

      3)白化与PCA的关系;

    内容为自己的学习记录,其中多有借鉴他人之处,最后一并给出链接。

    一、满秩矩阵的白化

    是随机向量,零均值,其协方差矩阵:

    如果协方差矩阵非奇异,对其特征值分解(特征值及SVD的细节信息,前文有介绍):

    定义矩阵:

    WW成为aa的白化矩阵。白化后的信号:

    其协方差矩阵等于单位阵。

    总结一下步骤:

    步骤一:去均值,中心化

    步骤二:求协方差矩阵,并进行特征值分解

    步骤三:求解白化矩阵,并得到白化后的信号

    给出一段示意代码:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    x = -10:.1:10;
    x = x +randn(1,length(x));
    y = 0.6*x + randn(1,length(x));
     
    %whiten
    data = [x;y];
    C = data*data';
    [u,s,v] = svd(C);
    W = v*diag(1./sqrt(diag(s)))*v';
    b = W*data;

    对应结果:

    可见白化其实就是让信号尽可能不相关。在分析PCA的时候,我们知道特征值与对应方向的方差有关联,所以白化就是这个思路:首先旋转坐标轴,其次根据对应方向的方差(特征值)进行伸缩,中心化的目的就是为了保证变换前后数据中心对应坐标轴中心,而不至于因为旋转/伸缩而偏离坐标原点太过分:

    是不是觉得与PCA相像?后面给出分析。

    二、秩亏缺矩阵的白化

    当协方差矩阵为秩亏缺时,可以写为:

    此时白化矩阵为:

    白化后的信号:

    此时白化后信号的协方差矩阵:

    至此,完成白化。这也容易理解,有效信号占一个子空间,对子空间白化,就是对有效信号进行白化。

    三、白化与PCA

    PCA前文有分析,给出PCA步骤:

    步骤一:数据中心化——去均值;

    步骤二:求解协方差矩阵;

    步骤三:利用特征值分解/奇异值分解 求解特征值以及特征向量;

    步骤四:利用特征向量构造投影矩阵;

    步骤五:利用投影矩阵,得出降维的数据。

    以上文二维数据为例:

    • 中心化:白化的中心化,PCA也需要中心化;
    • 旋转:白化步骤中的旋转,即旋转后的坐标就是PCA对应的第一、第二投影方向,如图中红线、绿线所示;
    • 拉伸:不同维度的特征值通常差别较大,在PCA中就是对特征值进行归一化。如果将不同维度的数据看作不同特征,白化步骤的拉伸本质也是特征的归一化

    参考:

    张贤达:《矩阵分析与应用》

  • 相关阅读:
    蓝牙4.0BLE抓包(二) – 广播包解析
    蓝牙4.0BLE抓包(一)
    蓝牙4.0 BLE 广播包解析
    蓝牙学习笔记之实例广播数据的解析
    Android ConstraintLayout详解
    Android ConstraintLayout的基本使用
    使用EasyBCD完美实现Windows7与Linux双系统
    使用MbrFix.exe修复MBR分区表
    C#中的Delegate
    C# 设置程序开机自动运行(+注册表项)
  • 原文地址:https://www.cnblogs.com/think90/p/11508964.html
Copyright © 2020-2023  润新知