FROM:http://www.drdobbs.com/parallel/indexing-and-searching-on-a-hadoop-distr/226300241?pgno=3
在今天的信息饱和的世界,地理分布的数据,需要一种系统的巨大增长,有利于快速检索有意义的结果的解析。分布式数据的可搜索的索引去加速的过程很长的路要走。在这篇文章中,我演示了如何使用Lucene和Java的基本数据索引和搜索,如何使用RAM目录索引和搜索,如何创建居住在HDF的数据索引,以及如何搜索这些索引。由开发环境,Eclipse的Java 1.6的Lucene的2.4.0,3.4.2,和Hadoop 0.19.1上运行微软Windows XP SP3。
为了解决这个任务,我把Hadoop的。Apache Hadoop项目的开发可靠,可扩展,分布式计算开源软件,Hadoop分布式文件系统(HDFS)是专为跨广域网的存储和共享文件。HDFS是建立在商品硬件上运行,并提供了容错,资源管理,以及最重要的是,应用程序数据访问的高吞吐量。
在本地文件系统上创建索引
第一步是创建一个索引存储在本地文件系统上的数据。开始通过创建一个Eclipse项目中,创建一个类,然后添加所需的JAR文件添加到项目。以这个例子发现在Web服务器中的日志文件的应用程序的数据:
2010-04-21 02:24:01 GET /blank 200 120
此数据被映射到某些字段:
- 2010-04-21 - 日期字段
- 2时24分01秒 - 时间字段
- GET - 法域(GET或POST) - 我们将记为“CS-方法”
- /空白 - 请求的URL字段 - 我们将表示为“CS-URI”
- 200 - 状态代码的请求 - 我们会记为“SC-状态”
- 120 - 时间采取现场(完成请求所需的时间)
目前在我们的样本文件的数据位于一个"E:DataFile"名为“test.txt的”如下:2010-04-21 02:24:01 GET /blank 200 120 2010-04-21 02:24:01 GET /US/registrationFrame 200 605 2010-04-21 02:24:02 GET /US/kids/boys 200 785 2010-04-21 02:24:02 POST /blank 304 56 2010-04-21 02:24:04 GET /blank 304 233 2010-04-21 02:24:04 GET /blank 500 567 2010-04-21 02:24:04 GET /blank 200 897 2010-04-21 02:24:04 POST /blank 200 567 2010-04-21 02:24:05 GET /US/search 200 658 2010-04-21 02:24:05 POST /US/shop 200 768 2010-04-21 02:24:05 GET /blank 200 347
我们要建立索引的数据出现在这个“test.txt的”文件,并保存到本地文件系统的索引。下面的Java代码,这样做。(注意每个部分的代码做什么的详细信息)的意见。
1 // Creating IndexWriter object and specifying the path where Indexed 2 //files are to be stored. 3 IndexWriter indexWriter = new IndexWriter("E://DataFile/IndexFiles", new StandardAnalyzer(), true); 4 5 // Creating BufferReader object and specifying the path of the file 6 //whose data is required to be indexed. 7 BufferedReader reader= new BufferedReader(new FileReader("E://DataFile/Test.txt")); 8 9 String row=null; 10 11 // Reading each line present in the file. 12 while ((row=reader.readLine())!= null) 13 { 14 // Getting each field present in a row into an Array and file delimiter is "space separated" 15 String Arow[] = row.split(" "); 16 17 // For each row, creating a document and adding data to the document with the associated fields. 18 org.apache.lucene.document.Document document = new org.apache.lucene.document.Document(); 19 20 document.add(new Field("date",Arow[0],Field.Store.YES,Field.Index.ANALYZED)); 21 document.add(new Field("time",Arow[1],Field.Store.YES,Field.Index.ANALYZED)); 22 document.add(newField ("cs-method",Arow[2],Field.Store.YES,Field.Index.ANALYZED)); 23 document.add(newField ("cs-uri",Arow[3],Field.Store.YES,Field.Index.ANALYZED)); 24 document.add(newField ("sc-status",Arow[4],Field.Store.YES,Field.Index.ANALYZED)); 25 document.add(newField ("time-taken",Arow[5],Field.Store.YES,Field.Index.ANALYZED)); 26 27 // Adding document to the index file. 28 indexWriter.addDocument(document); 29 } 30 indexWriter.optimize(); 31 indexWriter.close(); 32 reader.close();
的Java代码一旦被执行,将创建和索引文件存放在“E :/ /DataFile/ IndexFiles的位置。”
现在,我们可以搜索索引文件中的数据,我们刚刚创建的。基本上,搜索的“场”的数据上完成。您可以使用Lucene搜索引擎支持各种搜索语义搜索,你可以在一个特定的字段或字段组合执行搜索。下面的Java代码搜索索引:
1 // Creating Searcher object and specifying the path where Indexed files are stored. 2 Searcher searcher = new IndexSearcher("E://DataFile/IndexFiles"); 3 Analyzer analyzer = new StandardAnalyzer(); 4 5 // Printing the total number of documents or entries present in the index file. 6 System.out.println("Total Documents = "+searcher.maxDoc()) ; 7 8 // Creating the QueryParser object and specifying the field name on 9 //which search has to be done. 10 QueryParser parser = new QueryParser("cs-uri", analyzer); 11 12 // Creating the Query object and specifying the text for which search has to be done. 13 Query query = parser.parse("/blank"); 14 15 // Below line performs the search on the index file and 16 Hits hits = searcher.search(query); 17 18 // Printing the number of documents or entries that match the search query. 19 System.out.println("Number of matching documents = "+ hits.length()); 20 21 // Printing documents (or rows of file) that matched the search criteria. 22 for (int i = 0; i < hits.length(); i++) 23 { 24 Document doc = hits.doc(i); 25 System.out.println(doc.get("date")+" "+ doc.get("time")+ " "+ 26 doc.get("cs-method")+ " "+ doc.get("cs-uri")+ " "+ doc.get("sc-status")+ " "+ doc.get("time-taken"));
在这个例子中,搜索完成领域cs的uri的cs的uri的字段/空白内搜索的文本。因此,搜索代码运行时,所有的文件(或行)的CS-URI字段包含/空白,显示在输出中。的输出如下所示:
1 Total Documents = 11 2 Number of matching documents = 7 3 2010-04-21 02:24:01 GET /blank 200 120 4 2010-04-21 02:24:02 POST /blank 304 56 5 2010-04-21 02:24:04 GET /blank 304 233 6 2010-04-21 02:24:04 GET /blank 500 567 7 2010-04-21 02:24:04 GET /blank 200 897 8 2010-04-21 02:24:04 POST /blank 200 567 9 2010-04-21 02:24:05 GET /blank 200 347
HDFS上的基于内存的索引
现在考虑数据的情况下,位于一个像Hadoop DFS分布式文件系统。上述代码将无法正常工作分布式数据上直接创建索引,所以我们不得不完成前几步的诉讼程序,如从HDFS数据复制到本地文件系统,创建索引的数据出现在本地文件系统,最后将索引文件存储到HDFS。同样的步骤将需要搜索。但这种方法耗时且最理想的,相反,让我们的索引和搜索我们的数据使用HDFS节点的内存中的数据是居住。
假设数据文件“Test.txt的”早期使用现在居住在HDFS上,里面一个工作目录文件夹,名为“/数据文件/ Test.txt的。” 创建另一个称为“/ IndexFiles”HDFS的工作目录里面的文件夹,我们生成的索引文件将被存储。下面的Java代码在内存中的文件存储在HDFS上创建索引文件:
1 // Path where the index files will be stored. 2 String Index_DIR="/IndexFiles/"; 3 // Path where the data file is stored. 4 String File_DIR="/DataFile/test.txt"; 5 // Creating FileSystem object, to be able to work with HDFS 6 Configuration config = new Configuration(); 7 config.set("fs.default.name","hdfs://127.0.0.1:9000/"); 8 FileSystem dfs = FileSystem.get(config); 9 // Creating a RAMDirectory (memory) object, to be able to create index in memory. 10 RAMDirectory rdir = new RAMDirectory(); 11 12 // Creating IndexWriter object for the Ram Directory 13 IndexWriter indexWriter = new IndexWriter (rdir, new StandardAnalyzer(), true); 14 15 // Creating FSDataInputStream object, for reading the data from "Test.txt" file residing on HDFS. 16 FSDataInputStream filereader = dfs.open(new Path(dfs.getWorkingDirectory()+ File_DIR)); 17 String row=null; 18 19 // Reading each line present in the file. 20 while ((row=reader.readLine())!=null) 21 { 22 23 // Getting each field present in a row into an Array and file //delimiter is "space separated". 24 String Arow[]=row.split(" "); 25 26 // For each row, creating a document and adding data to the document 27 //with the associated fields. 28 org.apache.lucene.document.Document document = new org.apache.lucene.document.Document(); 29 30 document.add(new Field("date",Arow[0],Field.Store.YES,Field.Index.ANALYZED)); 31 document.add(new Field("time",Arow[1],Field.Store.YES,Field.Index.ANALYZED)); 32 document.add(new Field ("cs-method",Arow[2],Field.Store.YES,Field.Index.ANALYZED)); 33 document.add(new Field ("cs-uri",Arow[3],Field.Store.YES,Field.Index.ANALYZED)); 34 document.add(new Field ("sc-status",Arow[4],Field.Store.YES,Field.Index.ANALYZED)); 35 document.add(new Field ("time-taken",Arow[5],Field.Store.YES,Field.Index.ANALYZED)); 36 37 // Adding document to the index file. 38 indexWriter.addDocument(document); 39 } 40 indexWriter.optimize(); 41 indexWriter.close(); 42 reader.close();
因此,对于“test.txt的”居住在HDFS上的文件,我们现在有在内存中创建索引文件。存储索引文件,在HDFS文件夹:
1 // Getting files present in memory into an array. 2 String fileList[]=rdir.list(); 3 4 // Reading index files from memory and storing them to HDFS. 5 for (int i = 0; I < fileList.length; i++) 6 { 7 IndexInput indxfile = rdir.openInput(fileList[i].trim()); 8 long len = indxfile.length(); 9 int len1 = (int) len; 10 11 // Reading data from file into a byte array. 12 byte[] bytarr = new byte[len1]; 13 indxfile.readBytes(bytarr, 0, len1); 14 15 // Creating file in HDFS directory with name same as that of 16 //index file 17 Path src = new Path(dfs.getWorkingDirectory()+Index_DIR+ fileList[i].trim()); 18 dfs.createNewFile(src); 19 20 // Writing data from byte array to the file in HDFS 21 FSDataOutputStream fs = dfs.create(new Path(dfs.getWorkingDirectory()+Index_DIR+fileList[i].trim()),true); 22 fs.write(bytarr); 23 fs.close();
现在我们有必要的Test.txt的“数据文件创建并存储在HDFS目录的索引文件。
基于内存搜索HDFS上
我们现在可以搜索存储在HDFS中的索引。首先,我们必须使HDFS的索引文件在内存中进行搜索。下面的代码是用于这一过程:
1 // Creating FileSystem object, to be able to work with HDFS 2 Configuration config = new Configuration(); 3 config.set("fs.default.name","hdfs://127.0.0.1:9000/"); 4 FileSystem dfs = FileSystem.get(config); 5 6 // Creating a RAMDirectory (memory) object, to be able to create index in memory. 7 RAMDirectory rdir = new RAMDirectory(); 8 9 // Getting the list of index files present in the directory into an array. 10 Path pth = new Path(dfs.getWorkingDirectory()+Index_DIR); 11 FileSystemDirectory fsdir = new FileSystemDirectory(dfs,pth,false,config); 12 String filelst[] = fsdir.list(); 13 FSDataInputStream filereader = null; 14 for (int i = 0; i<filelst.length; i++) 15 { 16 // Reading data from index files on HDFS directory into filereader object. 17 filereader = dfs.open(new Path(dfs.getWorkingDirectory()+Index_DIR+filelst[i])); 18 19 int size = filereader.available(); 20 21 // Reading data from file into a byte array. 22 byte[] bytarr = new byte[size]; 23 filereader.read(bytarr, 0, size); 24 25 // Creating file in RAM directory with names same as that of 26 //index files present in HDFS directory. 27 IndexOutput indxout = rdir.createOutput(filelst[i]); 28 29 // Writing data from byte array to the file in RAM directory 30 indxout.writeBytes(bytarr,bytarr.length); 31 indxout.flush(); 32 indxout.close(); 33 } 34 filereader.close();
现在我们有了所有所需的索引文件在RAM中的目录(或存储器),所以我们可以直接执行搜索索引文件。搜索代码将被用于搜索本地文件系统类似,唯一的变化是,现在将使用RAM的目录对象(RDIR),而不是使用本地文件系统目录路径创建的搜索对象。
1 Searcher searcher = new IndexSearcher(rdir); 2 Analyzer analyzer = new StandardAnalyzer(); 3 4 System.out.println("Total Documents = "+searcher.maxDoc()) ; 5 6 QueryParser parser = new QueryParser("time", analyzer); 7 8 Query query = parser.parse("02\:24\:04"); 9 10 Hits hits = searcher.search(query); 11 12 System.out.println("Number of matching documents = "+ hits.length()); 13 14 for (int i = 0; i < hits.length(); i++) 15 { 16 Document doc = hits.doc(i); 17 System.out.println(doc.get("date")+" "+ doc.get("time")+ " "+ 18 doc.get("cs-method")+ " "+ doc.get("cs-uri")+ " "+ doc.get("sc-status")+ " "+ doc.get("time-taken"));
以下输出,搜索是场上的“时间”和“时间”字段内的文本搜索“02 24 04。” 因此,运行代码时,所有的文件(或行)的“时间”字段中包含“02: 24 04”,在输出中显示:
1 Total Documents = 11 2 Number of matching documents = 4 3 2010-04-21 02:24:04 GET /blank 304 233 4 2010-04-21 02:24:04 GET /blank 500 567 5 2010-04-21 02:24:04 GET /blank 200 897 6 2010-04-21 02:24:04 POST /blank 200 567
结论
像HDFS分布式文件系统是一个强大的工具,用于存储和访问大量的数据提供给我们的今天。随着内存的索引和搜索,访问数据,你真的想找到你不关心数据的群山之中得到稍微容易一些。