Find the result of the following code:
long long pairsFormLCM( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
for( int j = i; j <= n; j++ )
if( lcm(i, j) == n ) res++; // lcm means least common multiple
return res;
}
A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).
Output
For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.
Sample Input
15
2
3
4
6
8
10
12
15
18
20
21
24
转https://www.cnblogs.com/shentr/p/5285407.html
先来看个知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en for i in range(1,n): ei 从0取到ei的所有组合 必能包含所有n的因子。 现在取n的两个因子a,b a=p1 ^ a1 * p2 ^ a2 *..........*pn ^ an b=p1 ^ b1 * p2 ^ b2 *..........*pn ^ bn gcd(a,b)=p1 ^ min(a1,b1) * p2 ^ min(a2,b2) *..........*pn ^ min(an,bn) lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn) 哈哈,又多了种求gcd,lcm的方法。 题解: 先对n素因子分解,n = p1 ^ e1 * p2 ^ e2 *..........*pk ^ ek, lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pk ^ max(ak,bk) 所以,当lcm(a,b)==n时,max(a1,b1)==e1,max(a2,b2)==e2,…max(ak,bk)==ek 当ai == ei时,bi可取 [0, ei] 中的所有数 有 ei+1 种情况,bi==ei时同理。 那么就有2(ei+1)种取法,但是当ai = bi = ei 时有重复,所以取法数为2(ei+1)-1=2*ei+1。 除了 (n, n) 所有的情况都出现了两次 那么满足a<=b的有 (2*ei + 1)) / 2 + 1 个 复制代码 #include<iostream> #include<cstdio> #include<cstring> using namespace std; typedef long long LL; const int N=1e7+5; const int NN=1e6; unsigned int prime[NN],cnt; //prime[N]会MLE bool vis[N]; void is_prime() { cnt=0; memset(vis,0,sizeof(vis)); for(int i=2;i<N;i++) { if(!vis[i]) { prime[cnt++]=i; for(int j=i+i;j<N;j+=i) { vis[j]=1; } } } } int main() { is_prime(); int t; cin>>t; for(int kase=1;kase<=t;kase++) { LL n; cin>>n; int ans=1; for(int i=0;i<cnt&&prime[i]*prime[i]<=n;i++) { if(n%prime[i]==0) { int e=0; while(n%prime[i]==0) { n/=prime[i]; e++; } ans*=(2*e+1); } } if(n>1) ans*=(2*1+1); printf("Case %d: %d ",kase,(ans+1)/2); } } 复制代码