• [wikioi 2845]排序的代价(置换群)


    有一列数,要对其进行排序(升序)。排序只能通过交换来实现。每次交换,可以选择这列数中的任意二个,交换他们的位置,并且交换的代价为二个数的和。排序的总代价是排序过程中所有交换代价之和。先要求计算,对于任意给出的数列,要将其排成升序所需的最小代价。

    输入数据有两行组成。第一行一个数n,表示这列数共有n个数组成,第二行n个互不相同的整数(都是小于1000的正整数),表示这列数

    输入可能包含多组测试数据(少于50组),对于每个输入数据均需要给出对应的输出

    对于每个输入数据,输出最小代价。格式为Case t: min

    其中t为数据的编号,从1开始,min为这个数据的最小代价

    3

    3 2 1

    4

    8 1 2 4

    Case 1: 4

    Case 2: 17

    n<=1000

    分析:一般涉及到这种位置交换的都与置换群有联系。

    假设这里有一组数3 7 4 1 2 6 5

    则排序后应该是1 2 3 4 5 6 7

    与原数组比较 3 7 4 1 2 6 5

    则这个两个数组就可以表示一个置换群,可以理解成元素的一一映射,“1”——>"3","2"——>"7"以此类推

    这里介绍几个概念:

    轮换:即映射的循环,如例子中1-3-4-1就是一个循环,用(1,3,4)表示

    分解置换群:把置换群分解成若干个轮换

    如例子分解出来就是:(1,3,4)(2,7,5)(6)

    然后我们分析一下:"1"想去"3"的位置,"3"想去"4“的位置,"4"想去"1"的位置;"2"想去"7"的位置,"7”想去"5“的位置,"5"想去"2”的位置,以此类推……可以发现不同的轮换互不影响,也就是说我们可以分开来单独处理,这同样也暗示我们了这题应该是贪心思路,因为这里局部最优就导致一定全局最优

    下面考虑(1,3,4):

    我们的最终目标是把(1,3,4)通过若干交换变成(1)(3)(4)(每个元素都找准了自己位置),现在我们需要花费最少的代价交换它们

    既然每个元素都想去它后面那个元素所在的元素位置(特殊的,最后一个想去第一个)。很自然而然的想到,拿其中一个数不断跟前面的数换(换到第一位接着换到最后一位),经过n-1次交换后每个元素都回到了自己应该的位置,即分解成了单元素轮换,而既然要它代价最小,肯定就是拿这个轮换中最小的数换。这样正确吗?

    这里介绍一个引理:一个元素个数为n的轮换(n元环),分解成单元素轮换至少需要n-1交换

    证明:

    可以用数学归纳法证明:
     a、一元环,不需要动. 0次。
      b、二元环,直接交换即可.1次。
      c、三元环,第一次交换,总是把环拆成一个二元与一个一元。然后再拆二元环. 1+1=2次.
      d、四元环,第一次交换,有两种情况:拆成两个二环,或拆成一个三元环与一个一元环。
          无论哪种情况. 1+1+1=3. 1+2+0=3.
      e、假设拆k元环以内的环都只需要k-1次可以完成.现在来拆k+1元环。
         显然,无论交换哪两个,总是把k元环拆成了两个环,根据假设,拆这两个环所需的次数
       都是他们的元数-1.两个环的元数合起来为k+1,次数合起来就是k+1-2.再加上前面拆成
       两个环需要一次,就是k+1-2+1=k次。
     故命题得证。

    恩到了这里我们发现我们的做法很好,保证了交换次数最少,同时代价也是最小的,但是这样真的可以吗!?

    比如说,对100,101,102,103,104,99.如果按照上述方法来排序。代价为100+101+102+103+104+99*5次.实际上,为了避免每次移动99这样一个大数,如果外界还有一个很小的数,如1.我们可以第一步先把1跟99交换,然后再用1代替99完成那n-1次交换。完成后,再把1跟99换回去。这样代价为100+101+102+103+104+1*5 +(1+99)*2.显然代价要小

    晕,这不禁让我们对这个做法有点怀疑,还有反例吗!?

    不过仔细想想我们的思路是没有错的,反例存在的原因并不是各个轮换之间有影响而造成了,如果这样那我们的做法就肯定是错误的了。我们发现上述反例的最优解除了最开始和最末的交换不同之外,其他做法是一样的。于是我们意识到了问题所在,得不到最优解的原因是“交换的数字不够小”,有数字交换同一个轮换中的元素可以得到更小花费!!!!!!这个比轮换中最小的数还小的数在哪里!!!!!!!!!!!!!??????????是整个置换群(即整个数组)中的最小的!!

    于是我们想到了有两种可能:

      1)取这个轮换中的最小数作上述操作

      2)将整个置换群中的最小数m和这个轮换中的最小数m'交换;将m作上述操作;将m和m'换回来(为了对结果正确性无影响)

    /*PS:为何是将轮换中最小数和置换群中最小数换,用第二小数换不行吗?

     这里很好理解:假设换的不是最小数m'而是m''(m''>m'),则总代价就为m+m''+m*(n-1)+s-m+m+m''=(2m+m*(n-1)+s-m)+2m''>(2m+m*(n-1)+s-m)+2m'(即换最小数m'的代价),故应该是轮换中最小数和置换群中最小数换*/

    算法总结:

    ①暴力分解置换群成若干轮换

    ②对于每个轮换单独处理:

      1、求出这个轮换中最小值m‘和这个轮换中各个元素的总和s以及个数n,则上述第一种方案的代价为:Cost1=m'*(n-1)+s-m'

      2、求出整个数组中最小值m,则上述第二种方案的代价为:Cost2=m+m'+m*(n-1)+s-m+m+m'

      3、去Cost1和Cost2中的最小值作为此轮换处理结果,加入到最后结果中

    注意:再回归到这个题目,注意到数字不是连续的,所以要离散处理

  • 相关阅读:
    Spark的协同过滤.Vs.Hadoop MR
    IAAS: IT公司去IOE-Alibaba系统构架解读
    八种Docker容器开发模式解析
    Docker的特性解析
    Docker的官网在线--中文教程
    三维重建:深度相机方案对比-KinectFusion的基本原理(尺度)
    ES: 机器学习、专家系统、控制系统的数学映射
    算法设计之—常用算法之-分支界定法
    图像特征综述
    CaptCha的现状与未来
  • 原文地址:https://www.cnblogs.com/wmrv587/p/3530506.html
Copyright © 2020-2023  润新知