1图片静态识别
import cv2 as cv import numpy as np def face_deftect_demo(): #转化为灰度图 gray =cv.cvtColor(src,cv.COLOR_BGR2GRAY) #加载特征数据 face_detector = cv.CascadeClassifier( "D:/sofeware/sofeware/python37/Lib/site-packages/cv2/data/haarcascade_frontalface_alt_tree.xml") #在多个尺度空间进行检测(图像名,向上或者向下变换尺度值(原图几倍),变换图清晰度低选择低的值,调整1.02为1.1可以加快速度) faces = face_detector.detectMultiScale(gray, 1.02, 2) #绘制矩形,提取长宽高,设置线的颜色,宽度 for x, y, w, h in faces: cv.rectangle(src, (x, y), (x+w, y+h), (0, 0, 255), 2) cv.imshow("result", src) print("--------- Python OpenCV Tutorial ---------") src = cv.imread("C:/Users/wml/Desktop/wml/ym.jpg") cv.namedWindow("input image", cv.WINDOW_AUTOSIZE) cv.namedWindow("result", cv.WINDOW_AUTOSIZE) cv.imshow("input image", src) face_deftect_demo() cv.waitKey(0) cv.destroyAllWindows()
2视频动态识别
import cv2 as cv import numpy as np def face_deftect_demo(image): gray =cv.cvtColor(image,cv.COLOR_BGR2GRAY) face_detector = cv.CascadeClassifier( "D:/sofeware/sofeware/python37/Lib/site-packages/cv2/data/haarcascade_frontalface_alt_tree.xml") faces = face_detector.detectMultiScale(gray, 1.02, 1) for x, y, w, h in faces: cv.rectangle(image, (x, y), (x+w, y+h), (0, 0, 255), 2) cv.imshow("result", image) print("--------- Python OpenCV Tutorial ---------") capture = cv.VideoCapture(0) cv.namedWindow("result", cv.WINDOW_AUTOSIZE) while(True): ret, frame = capture.read() frame = cv.flip(frame, 1)#镜像变换 face_deftect_demo(frame) c=cv.waitKey(10) if(c==27):#esc停止执行 break # cv.imshow("input image", src) # face_deftect_demo() cv.waitKey(0) cv.destroyAllWindows()