好题啊!
数树
- ( ext{opt = 0, 6 pts.})
显然答案为 (y^{n-|E_1∩E_2|}) 。
- ( ext{opt = 1, 47 pts.})
考虑该容斥式:(f(S)=sumlimits_{Tsubset S}sumlimits_{Psubset T}(-1)^{|T|-|P|}f(P)) ,则:
令 (g(T)) 表示包含 (T) 的 (E_2) 个数。
考虑一个定理:给定 (n) 个点的森林,有 (k) 个连通分量,第 (i) 个连通分量的大小为 (a_i) ,则由 ( ext{prufer}) 序列得:生成树的个数为 (n^{k-2}prodlimits_{i=1}^{k}a_i) 。
代回原式,记 (k=n-|T|) ,表示连通分量个数:
发现一个大小为 (a_i) 的连通分量对答案的贡献为 (Ka_i) ,其中 (K=frac{ny}{1-y}) 为一个常量。
考虑贡献的组合意义,大小为 (a_i) 的连通分量贡献相当于在这个连通分量重选取一个点,产生 (K) 的乘积贡献。
据此,可进行 (dp) :(mathrm{f[u][0/1]}) 表示在 (u) 的子树中,当前连通分量是否已经做出贡献的答案。这里为了方便转移,当前连通分量若已做出贡献,就计入答案。
int f[N][2], K;
void dfs(int u, int fa) {
f[u][0] = 1, f[u][1] = K;
for (auto v: adj[u]) {
if (v == fa) continue;
dfs(v, u);
f[u][1] = (1ll * f[u][0] * f[v][1] + 1ll * f[u][1] * f[v][0] + 1ll * f[u][1] * f[v][1]) % mod;
f[u][0] = (1ll * f[u][0] * f[v][0] + 1ll * f[u][0] * f[v][1]) % mod;
}
}
- ( ext{opt = 2, 47 pts.})
这一段类似 ( ext{opt = 2}) ,直接快进:
换个角度考虑,每个连通分量是无序的,相当于有 (n) 个有标号小球扔进 (k) 个无标号盒子,盒子不为空。
对于一个装有 (a) 个球的盒子,一个生成树对其贡献为 (frac{n^2y}{1-y}a^2) 作为乘积,有 (a^{a-2}) 个生成树,因此总乘积贡献为 (frac{n^2y}{1-y}a^a) 。
显然,总方案的 (EGF) 等于 (exp) 单个盒子的 (EGF) ,即:
答案即为:
套多项式 (exp) 即可。
时间复杂度 (O(nlogn)) 。