• 支持向量机 人脸识别(SVM)SKLearn


    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    import numpy as np
    import pylab as pl
    from sklearn import svm
    
    # we create 40 separable points
    np.random.seed(0)#每次运行结果不变
    X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
    #randn20,0   产生20个点每个点两维
    #-+[2,2]正态分布范围
    Y = [0]*20 +[1]*20
    print(X,Y)
    
    #fit the model
    clf = svm.SVC(kernel='linear')
    clf.fit(X, Y)
    
    # get the separating hyperplane
    w = clf.coef_[0]
    a = -w[0]/w[1]#斜率
    xx = np.linspace(-5, 5)
    yy = a*xx - (clf.intercept_[0])/w[1]#clf.intercept_[0]bias偏置
    
    # plot the parallels to the separating hyperplane that pass through the support vectors
    b = clf.support_vectors_[0]
    yy_down = a*xx + (b[1] - a*b[0])
    b = clf.support_vectors_[-1]
    yy_up = a*xx + (b[1] - a*b[0])
    
    print "w: ", w
    print "a: ", a
    
    # print "xx: ", xx
    # print "yy: ", yy
    print "support_vectors_: ", clf.support_vectors_
    print "clf.coef_: ", clf.coef_
    
    # switching to the generic n-dimensional parameterization of the hyperplan to the 2D-specific equation
    # of a line y=a.x +b: the generic w_0x + w_1y +w_3=0 can be rewritten y = -(w_0/w_1) x + (w_3/w_1)
    
    
    # plot the line, the points, and the nearest vectors to the plane
    pl.plot(xx, yy, 'k-')
    pl.plot(xx, yy_down, 'k--')
    pl.plot(xx, yy_up, 'k--')
    
    pl.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
              s=80, facecolors='none')
    pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired)
    
    pl.axis('tight')
    pl.show()
    

     人脸识别

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    """
    __title__ = ''
    __author__ = 'wlc'
    __mtime__ = '2017/9/1'
    """
    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    
    from __future__ import print_function
    
    from time import time
    import logging#打印程序进展
    import matplotlib.pyplot as plt
    
    from sklearn.model_selection import train_test_split
    from sklearn.datasets import fetch_lfw_people
    from sklearn.model_selection import GridSearchCV
    from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    from sklearn.decomposition import RandomizedPCA
    from sklearn.svm import SVC
    
    
    
    
    print(__doc__)
    
    # Display progress logs on stdout
    logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
    
    
    ###############################################################################
    # Download the data, if not already on disk and load it as numpy arrays
    
    lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)#名人脸数据集
    
    # introspect the images arrays to find the shapes (for plotting)
    n_samples, h, w = lfw_people.images.shape
    
    # for machine learning we use the 2 data directly (as relative pixel
    # positions info is ignored by this model)
    
    X = lfw_people.data#每一行是一个实例每一列是特征值
    n_features = X.shape[1] #特征向量的维度每个人提取的特征值
    
    # the label to predict is the id of the person
    y = lfw_people.target#每个实例的label
    target_names = lfw_people.target_names#label名
    n_classes = target_names.shape[0]#类个数
    
    print("Total dataset size:")
    print("n_samples: %d" % n_samples)
    print("n_features: %d" % n_features)
    print("n_classes: %d" % n_classes)
    
    
    ###############################################################################
    # Split into a training set and a test set using a stratified k fold
    
    # split into a training and testing set
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.25)
    
    ###############################################################################
    # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
    # dataset): unsupervised feature extraction / dimensionality reduction
    n_components = 150
    #pca降维高维降低成低纬度
    print("Extracting the top %d eigenfaces from %d faces"
          % (n_components, X_train.shape[0]))
    t0 = time()
    pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
    print("done in %0.3fs" % (time() - t0))
    
    eigenfaces = pca.components_.reshape((n_components, h, w))
    
    print("Projecting the input data on the eigenfaces orthonormal basis")
    t0 = time()
    X_train_pca = pca.transform(X_train)
    X_test_pca = pca.transform(X_test)
    print("done in %0.3fs" % (time() - t0))
    
    ###############################################################################
    # Train a SVM classification model
    
    print("Fitting the classifier to the training set")
    t0 = time()
    param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
                  'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }#使用多少特征点
    clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
    clf = clf.fit(X_train_pca, y_train)
    print("done in %0.3fs" % (time() - t0))
    print("Best estimator found by grid search:")
    print(clf.best_estimator_)
    
    ###############################################################################
    # Quantitative evaluation of the model quality on the test set
    
    print("Predicting people's names on the test set")
    t0 = time()
    y_pred = clf.predict(X_test_pca)
    print("done in %0.3fs" % (time() - t0))
    
    print(classification_report(y_test, y_pred, target_names=target_names))
    print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))
    
    
    
    
    
    
    ###############################################################################
    # Qualitative evaluation of the predictions using matplotlib
    
    def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
        """Helper function to plot a gallery of portraits"""
        plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
        plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
        for i in range(n_row * n_col):
            plt.subplot(n_row, n_col, i + 1)
            plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
            plt.title(titles[i], size=12)
            plt.xticks(())
            plt.yticks(())
    
    
    # plot the result of the prediction on a portion of the test set
    
    def title(y_pred, y_test, target_names, i):
        pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
        true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
        return 'predicted: %s
    true:      %s' % (pred_name, true_name)
    
    prediction_titles = [title(y_pred, y_test, target_names, i)
                         for i in range(y_pred.shape[0])]
    
    plot_gallery(X_test, prediction_titles, h, w)
    
    # plot the gallery of the most significative eigenfaces
    
    eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
    plot_gallery(eigenfaces, eigenface_titles, h, w)
    
    plt.show()
    

      

     

  • 相关阅读:
    SQL最小 最大时间 查询
    Linq Except,Distinct,Left Join
    Js 刷新页面
    olgaInteractive Shape Modeling(0)
    olgaInteractive Shape Modeling(1):classmaterials
    olgaInteractive Shape Modeling(1):classmaterials:Shape Creation and Deformation
    olgaInteractive Shape Modeling(2):related papers
    计算机内部如何存储数据,关于源码、补码的问题!
    sprintf用法解析
    堆与栈有什么区别?
  • 原文地址:https://www.cnblogs.com/wlc297984368/p/7465056.html
Copyright © 2020-2023  润新知