n,m<1e9 求gcd(f[n],f[m])
公式gcd(f[n],f[m]) = f [ gcd(n,m)]
这就转化成矩阵快速幂求f[x];
性质2 gcd(f[n],f[n+1]) = 1;
#include<bits/stdc++.h> using namespace std; #define ll long long #define pb push_back #define mp make_pair #define fi first #define se second #define all(v) v.begin(),v.end() #define mem(a) memset(a,0,sizeof(a)) const ll mod =1e8; const int N = 20; //提议 : 求 gcd(f[n],f[m]) = f[gcd(n,m)] tip: gcd(f[n],f[n+])=1; namespace Matrix{ int xn; struct Mat{ int v[N][N]; Mat(){} Mat(int x){ memset(v,0,sizeof v); for (int i=1;i<=xn;i++) v[i][i]=x; } void Print(){ for (int i=1;i<=xn;i++,puts("")) for (int j=1;j<=xn;j++) printf("%3d ",v[i][j]); puts(""); } }; Mat operator * (Mat A,Mat B){ Mat C(0); for (int i=1;i<=xn;i++) for (int j=1;j<=xn;j++) for (int k=1;k<=xn;k++) C.v[i][j]=(1LL*A.v[i][k]*B.v[k][j]+C.v[i][j])%mod; return C; } Mat Pow(Mat x,ll y){ Mat ans(1); for (;y;y>>=1,x=x*x) if (y&1ll){ ans=ans*x; //ans.Print(); } return ans; } } using namespace Matrix; int main(){ int n,m; cin>>n>>m; int v= __gcd(n,m); xn = 2; Mat a; a.v[1][1]= a.v[1][2]= a.v[2][1]= 1; a.v[2][2]=0; Mat ans = Pow(a,1ll*v); cout<<ans.v[1][2]<<endl; return 0; }