• Python生成器


      在Python中,这种一边循环一边计算的机制,称为生成器:generator。

      要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

    >>> L = [x * x for x in range(10)]
    >>> L
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    >>> g = (x * x for x in range(10))
    >>> g
    <generator object <genexpr> at 0x1022ef630>

      创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

    >>> next(g)
    0
    >>> next(g)
    1
    >>> next(g)
    4
    >>> next(g)
    9
    >>> next(g)
    16
    >>> next(g)
    25
    >>> next(g)
    36
    >>> next(g)
    49
    >>> next(g)
    64
    >>> next(g)
    81
    >>> next(g)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration
    

      generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

    >>> g = (x * x for x in range(10))
    >>> for n in g:
    ...     print(n)
    ...
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81

      所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:1, 1, 2, 3, 5, 8, 13, 21, 34, ...

    斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            print(b)
            a, b = b, a + b
            n = n + 1
        return 'done'
    

    注意,赋值语句:  

    a, b = b, a + b
    

    相当于:

    t = (b, a + b) # t是一个tuple
    a = t[0]
    b = t[1]
    

      但不必显式写出临时变量t就可以赋值。上面的函数可以输出斐波那契数列的前N个数:

    >>> fib(10)
    1
    1
    2
    3
    5
    8
    13
    21
    34
    55
    done
    

      仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

    def fib(max):
        n,a,b = 0,0,1
    
        while n < max:
            #print(b)
            yield  b
            a,b = b,a+b
    
            n += 1
    
        return 'done'
    

      这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

    >>> f = fib(6)
    >>> f
    <generator object fib at 0x104feaaa0>
    

      这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。 

    data = fib(10)
    print(data)
    
    print(data.__next__())
    print(data.__next__())
    print("干点别的事")
    print(data.__next__())
    print(data.__next__())
    print(data.__next__())
    print(data.__next__())
    print(data.__next__())
    
    #输出
    <generator object fib at 0x101be02b0>
    1
    干点别的事
    3
    8
    

      在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

    >>> for n in fib(6):
    ...     print(n)
    ...
    1
    3
    8
    

      但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

    >>> g = fib(6)
    >>> while True:
    ...     try:
    ...         x = next(g)
    ...         print('g:', x)
    ...     except StopIteration as e:
    ...         print('Generator return value:', e.value)
    ...         break
    ...
    g: 1
    g: 1
    g: 2
    g: 3
    g: 5
    g: 8
    Generator return value: done

      还可通过yield实现在单线程的情况下实现并发运算的效果 

    #_*_coding:utf-8_*_
    __author__ = 'Alex Li'
    
    import time
    def consumer(name):
        print("%s 准备吃包子啦!" %name)
        while True:
           baozi = yield
    
           print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
    
    
    def producer(name):
        c = consumer('A')
        c2 = consumer('B')
        c.__next__()
        c2.__next__()
        print("老子开始准备做包子啦!")
        for i in range(10):
            time.sleep(1)
            print("做了2个包子!")
            c.send(i)
            c2.send(i)
    
    producer("alex")
    
    通过生成器实现协程并行运算
    

     详见博客https://www.cnblogs.com/yuanchenqi/articles/5769491.html

     

  • 相关阅读:
    WebService优点和缺点小结
    MongoDB监控之一:运行状态、性能监控,分析
    MongoDB分析工具之三:db.currentOp()
    Linux NFS服务器的安装与配置
    第三方支付 转
    视频监控/存储系统设计要点
    ViewPager禁止滑动以及它与内层滑动控件水平方向上事件冲突的解决方法
    (五)unity4.6Ugui中文教程文档-------概要-UGUI Interaction Components
    ListView列表拖拽排序
    shell脚本编写汇集
  • 原文地址:https://www.cnblogs.com/wjcoding/p/11049473.html
Copyright © 2020-2023  润新知