• BZOJ 2301: [HAOI2011]Problem b


    2301: [HAOI2011]Problem b
    思路:
    莫比乌斯反演+整除分块
    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb emplace_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    //head
    
    const int N = 5e4 + 10;
    int sum[N], mu[N], prime[N], cnt;
    bool not_p[N];
    void seive() {
        mu[1] = 1;
        for (int i = 2; i < N; ++i) {
            if(!not_p[i]) prime[++cnt] = i, mu[i] = -1;
            for (int j = 1; j <= cnt && i*prime[j] < N; ++j) {
                not_p[i*prime[j]] = true;
                if(i%prime[j] == 0) {
                    mu[i*prime[j]] = 0;
                    break;
                }
                mu[i*prime[j]] = -mu[i];
            }
        }
        for (int i = 1; i < N; ++i) sum[i] = sum[i-1] + mu[i];
    }
    inline LL solve(int n, int m) {
        if(n <= 0 || m <= 0) return 0;
        LL ans = 0;
        int up = min(n, m);
        for (int l = 1, r; l <= up; l = r+1) {
            r = min(n/(n/l), m/(m/l));
            ans += (n/l)*1LL*(m/l)*(sum[r]-sum[l-1]);
        }
        return ans;
    }
    int t, a, b, c, d, k;
    int main() {
        seive();
        scanf("%d", &t);
        while(t--) {
            scanf("%d %d %d %d %d", &a, &b, &c, &d, &k);
            printf("%lld
    ", solve(b/k, d/k)-solve((a-1)/k, d/k)-solve(b/k, (c-1)/k)+solve((a-1)/k, (c-1)/k));
        }
        return 0;
    }
    
    
  • 相关阅读:
    零知识证明入门
    Vue入门语法(二)表单,组件,路由和ajax
    Vue入门语法(一)
    okexchain整体架构分析
    写了个unsigned Tx生成二维码的web站点
    metamusk与web3相关资料
    QRCode.js:使用 JavaScript 生成二维码
    js工程安装,发布等命令
    C语言学习笔记-9.结构体
    C语言学习笔记-8.指针
  • 原文地址:https://www.cnblogs.com/widsom/p/11514274.html
Copyright © 2020-2023  润新知