在代码中为了清楚的表示一些错误和函数运行状态,我们预先定义一些变量来表示这些状态。在head.h头文件中有如下定义:
//定义数据结构中要用到的一些变量和类型 #ifndef HEAD_H #define HEAD_H #include <stdio.h> #include <malloc.h> #include <stdlib.h> #include <math.h> #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 //分配内存出错 typedef int Status; //函数返回值类型 typedef int ElemType; //用户定义的数据类型 #endif2.树的头文件 BiTree.h代码如下:
#ifndef BITREE_H #define BITREE_H #include "head.h" //Link为指针 Thread为线索 typedef enum PointerTag {Link,Thread}; typedef struct BiNode{ ElemType data; struct BiNode *left,*right; int LTag,RTag; //左右标志 }BiNode,*pBiNode; Status InsertRight(pBiNode &root,ElemType e); Status InsertLeft(pBiNode &root,ElemType e); Status InitBiTree(pBiNode &tree){ tree=(pBiNode)malloc(sizeof(BiNode)); if(!tree) return OVERFLOW; tree->data=-999999; tree->left=NULL; tree->right=NULL; return OK; } Status BiTreeEmpty(pBiNode root){ if(root==NULL) return ERROR; return root->left==root->right && root->data==-999999; } Status HasNoNode(pBiNode root){ if(root==NULL) return ERROR; return root->left==root->right ; } Status CreatTreeNode(pBiNode &node,ElemType e){ node=(pBiNode)malloc(sizeof(BiNode)); if(!node) return OVERFLOW; node->data=e; node->left=NULL; node->right=NULL; return OK; } Status InsertRight(pBiNode &root,ElemType e){ if(root->right==NULL){ if(e>root->data){ pBiNode p; CreatTreeNode(p,e); root->right=p; return OK; }else{ pBiNode p; CreatTreeNode(p,e); root->left=p; return OK; } }else{ e>root->data? InsertRight(root->right,e):InsertLeft(root,e); } } Status InsertLeft(pBiNode &root,ElemType e){ if(root->left==NULL){ if(e>root->data){ pBiNode p; CreatTreeNode(p,e); root->right=p; return OK; }else{ pBiNode p; CreatTreeNode(p,e); root->left=p; return OK; } }else{ e<=root->data?InsertLeft(root->left,e):InsertRight(root,e); } } Status InsertTree(pBiNode &root,ElemType e){ if(BiTreeEmpty(root)){ root->data=e; return true; } if(e>root->data){ InsertRight(root,e); }else{ InsertLeft(root,e); } } Status CreateBiTree(pBiNode &root,ElemType *a,int n){ for (int i=0;i<n;i++) { InsertTree(root,a[i]); } return true; } Status print(ElemType e ){ printf("%d ",e); return true; } Status PreOrderTraverse(pBiNode root,Status(*p)(int)){ if(root){ (*p)(root->data); PreOrderTraverse(root->left,p); PreOrderTraverse(root->right,p); } return OK; } Status MiddleOrderTraverse(pBiNode root,Status(*p)(int)){ if(root){ MiddleOrderTraverse(root->left,p); (*p)(root->data); MiddleOrderTraverse(root->right,p); } return OK; } Status AfterOrderTraverse(pBiNode root,Status(*p)(int)){ if(root){ AfterOrderTraverse(root->left,p); AfterOrderTraverse(root->right,p); (*p)(root->data); } return OK; } Status ClearBiTree(pBiNode &root){ if(root){ ClearBiTree(root->left); ClearBiTree(root->right); free(root); root==NULL; } return OK; } #endif
3.线索二叉树代码
#include "BiTree.h" //中序线索 void InOrder( pBiNode root,pBiNode &pre){ if (root!=NULL) { InOrder(root->left,pre); if (root->left==NULL) { root->left=pre; root->LTag=1; } if (pre!=NULL && pre->right==NULL) { pre->right=root; pre->RTag=1; } pre=root; InOrder(root->right,pre); } } //线索 void CreateInOrder(pBiNode& root){ pBiNode pre=NULL; if(root!=NULL){ InOrder(root,pre); pre->right=NULL; pre->RTag=1; } } //获取头指针 pBiNode FirstNode(pBiNode root){ while (root->LTag!=1) { root=root->left; } return root; } //获取下一个节点 pBiNode NextNode(pBiNode root){ if (root->RTag!=1) { return FirstNode(root->right); }else{ return root->right; } } //遍历线索 void InOrder(pBiNode root){ for (pBiNode p=FirstNode(root);p!=NULL;p=NextNode(p)) { printf("%d ",p->data); } } void main(){ ElemType a[14]={100,50,200,40,30,45,60,55,61,200,150,300,250,400}; pBiNode root; InitBiTree(root); CreateBiTree(root,a,14); printf("前序:"); PreOrderTraverse(root,print); printf(" 中序:"); MiddleOrderTraverse(root,print); printf(" 后序:"); AfterOrderTraverse(root,print); CreateInOrder(root); printf(" 线索二叉树中序:"); InOrder(root); printf(" "); ClearBiTree(root); }4.测试结果
前序:100 50 40 30 45 60 55 61 200 150 300 250 400 中序:30 40 45 50 55 60 61 100 150 200 250 300 400 后序:30 45 40 55 61 60 50 150 250 400 300 200 100 线索二叉树中序:30 40 45 50 55 60 61 100 150 200 250 300 400