CSL 的密码
解题思路
后缀数组。对于每一个后缀(k)都有(n - k + 1)个前缀,把所有不和前一个(排序后的)公共且长度大于(m)的前缀个数加起来。
代码如下
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 100005;
int x[N], y[N], c[N], sa[N];
char s[N];
int n, m;
void get_SA()
{
for(int i = 1; i <= m; i ++) c[i] = 0;
for(int i = 1; i <= n; i ++) c[x[i] = s[i]] ++;
for(int i = 1; i <= m; i ++) c[i] += c[i - 1];
for(int i = n; i >= 1; i --) sa[c[x[i]] --] = i;
for(int k = 1; k <= n; k <<= 1){
int num = 0;
for(int i = n - k + 1; i <= n; i ++) y[++num] = i;
for(int i = 1; i <= n; i ++) if(sa[i] > k) y[++num] = sa[i] - k;
for(int i = 1; i <= m; i ++) c[i] = 0;
for(int i = 1; i <= n; i ++) c[x[i]] ++;
for(int i = 1; i <= m; i ++) c[i] += c[i - 1];
for(int i = n; i >= 1; i --) sa[c[x[y[i]]] --] = y[i], y[i] = 0;
num = 1;
swap(x, y);
x[sa[1]] = num;
for(int i = 2; i <= n; i ++){
if(sa[i] + k <= n && sa[i - 1] + k <= n)
x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k])? num: ++num;
else
x[sa[i]] = ++num;
}
if(num == n)
break;
m = num;
}
}
int height[N], rk[N];
void get_h()
{
int k = 0;
for(int i = 1; i <= n; i ++) rk[sa[i]] = i;
for(int i = 1; i <= n; i ++){
if(rk[i] == 1) continue;
if(k) --k;
int j = sa[rk[i] - 1];
while(i + k <= n && j + k <= n && s[i + k] == s[j + k]) ++k;
height[rk[i]] = k;
}
}
int main()
{
int len;
scanf("%d%d", &n, &len);
m = 'z';
scanf("%s", s + 1);
get_SA();
get_h();
ll ans = 0;
for(int i = 1; i <= n; i ++){
if(sa[i] > n - len + 1) continue;
int num = n - sa[i] + 1 - len + 1;
ans += num - max(0, height[i] - len + 1);
}
printf("%lld
", ans);
return 0;
}