• 54、tensorflow手写识别的高级版本


    '''
    Created on 2017年3月4日
    
    @author: weizhen
    '''
    import tensorflow as tf
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)
    
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)
    
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    sess = tf.InteractiveSession()
    x = tf.placeholder(tf.float32, shape=[None, 784])
    y_ = tf.placeholder(tf.float32, shape=[None, 10])
    tf.global_variables_initializer()
    
    W_conv1 = weight_variable(shape=[5, 5, 1, 32])
    b_conv1 = bias_variable(shape=[32])
    
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    W_conv2 = weight_variable(shape=[5, 5, 32, 64])
    b_conv2 = bias_variable(shape=[64])
    
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    
    cross_entropy = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    sess.run(tf.global_variables_initializer())
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i % 100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x:batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g" % (i, train_accuracy))
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    
    print("test accuracy %g" % accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

    训练的结果在附件当中

  • 相关阅读:
    处理sevenzipsharp 检查密码函数的Bug
    C# 开源压缩组件比较
    css 一些技巧
    input 限制输入
    原生JS实现淡入淡出效果(fadeIn/fadeOut/fadeTo)
    js string.format 方法
    Atom插件及使用
    chrome浏览器的跨域设置-包括版本49前后两种设置 ,windows&mac
    原生js监听input值改变事件
    html5 tab横向滚动,无滚动条(transform:translate)
  • 原文地址:https://www.cnblogs.com/weizhen/p/6502005.html
Copyright © 2020-2023  润新知