• 二叉树基础知识


    一、树的定义

    树是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。

     

    树具有的特点有:

    (1)每个结点有零个或多个子结点

    (2)没有父节点的结点称为根节点

    (3)每一个非根结点有且只有一个父节点

    (4)除了根结点外,每个子结点可以分为多个不相交的子树。

    树的基本术语有:

    若一个结点有子树,那么该结点称为子树根的“双亲”,子树的根称为该结点的“孩子”。有相同双亲的结点互为“兄弟”。一个结点的所有子树上的任何结点都是该结点的后裔。从根结点到某个结点的路径上的所有结点都是该结点的祖先。

    结点的度:结点拥有的子树的数目

    叶子结点:度为0的结点

    分支结点:度不为0的结点

    树的度:树中结点的最大的度

    层次:根结点的层次为1,其余结点的层次等于该结点的双亲结点的层次加1

    树的高度:树中结点的最大层次

    森林:0个或多个不相交的树组成。对森林加上一个根,森林即成为树;删去根,树即成为森林。

    二、二叉树

    1、二叉树的定义

    二叉树是每个结点最多有两个子树的树结构。它有五种基本形态:二叉树可以是空集;根可以有空的左子树或右子树;或者左、右子树皆为空。

     

    2、二叉树的性质

    性质1:二叉树第i层上的结点数目最多为2i-1(i>=1)

    性质2:深度为k的二叉树至多有2k-1个结点(k>=1)

    性质3:包含n个结点的二叉树的高度至少为(log2n)+1

    性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1

    3、性质4的证明

    性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1

    证明:因为二叉树中所有结点的度数均不大于2,不妨设n0表示度为0的结点个数,n1表示度为1的结点个数,n2表示度为2的结点个数。三类结点加起来为总结点个数,于是便可得到:n=n0+n1+n2 (1)

    由度之间的关系可得第二个等式:n=n0*0+n1*1+n2*2+1即n=n1+2n2+1 (2)

    (关于2等式的理解,由于每一个节点都有一个指向它的树干除了根节点,节点数n=树干数+1=n0*0+n1*1+n2*2+1)

    将(1)(2)组合在一起可得到n0=n2+1

    三、满二叉树、完全二叉树和二叉查找树

    1、满二叉树

    定义:高度为h,并且由2h-1个结点组成的二叉树,称为满二叉树

     

    2、完全二叉树

    定义:一棵二叉树中,只有最下面两层结点的度可以小于2,并且最下层的叶结点集中在靠左的若干位置上,这样的二叉树称为完全二叉树。

    特点:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。显然,一棵满二叉树必定是一棵完全二叉树,而完全二叉树未必是满二叉树。

     

    面试题:如果一个完全二叉树的结点总数为768个,求叶子结点的个数。

    由二叉树的性质知:n0=n2+1,将之带入768=n0+n1+n2中得:768=n1+2n2+1,因为完全二叉树度为1的结点个数要么为0,要么为1,那么就把n1=0或者1都代入公式中,很容易发现n1=1才符合条件。所以算出来n2=383,所以叶子结点个数n0=n2+1=384。

    总结规律:如果一棵完全二叉树的结点总数为n,那么叶子结点等于n/2(当n为偶数时)或者(n+1)/2(当n为奇数时)

    3、二叉查找树

    定义:二叉查找树又被称为二叉搜索树。设x为二叉查找树中的一个结点,x结点包含关键字key,结点x的key值计为key[x]。如果y是x的左子树中的一个结点,则key[y]<=key[x];如果y是x的右子树的一个结点,则key[y]>=key[x]

     

    在二叉查找树种:

    (1)若任意结点的左子树不空,则左子树上所有结点的值均小于它的根结点的值。

    (2)任意结点的右子树不空,则右子树上所有结点的值均大于它的根结点的值。

    (3)任意结点的左、右子树也分别为二叉查找树。

    (4)没有键值相等的结点。

     
    ————————————————
    版权声明:本文为CSDN博主「小拳头」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/xiaoquantouer/article/details/65631708

  • 相关阅读:
    【来自知乎】AR技术可以通过H5实现吗?不通过APP
    太虚AR
    【ArUco】- Augmented reality library based on OpenCV
    unity MVC简易框架! MVC in Code Control
    游戏服务器框架与互联网产品的认识
    关于 boost::asio::io_service::run() 出现【句柄无效】的问题
    编译luabind-0.9.1 出现 error C2665: 'boost::operator ==' : none of the 4 overloads could convert all the argument types 的解决方案
    javascript 控制 table tr display block 显示模式时,只对第一个单元格有效
    Ogre::UINT 与 其他库的 类型冲突问题
    排序仿函数 出现 std::priority_queue::push() 的 invalid operator < 异常
  • 原文地址:https://www.cnblogs.com/weiyulin/p/11597344.html
Copyright © 2020-2023  润新知