• 65、Spark Streaming:数据接收原理剖析与源码分析


    一、数据接收原理

    image


    二、源码分析

    入口包org.apache.spark.streaming.receiver下ReceiverSupervisorImpl类的onStart()方法

    ###
    
     override protected def onStart() {
        // 这里的blockGenerator很重要,和数据接收有关,其运行在worker的executor端负责数据接收后的一些存取工作,以及配合ReceiverTracker
        // 在Executor上,启动Receiver之前,就会先启动这个Receiver相关的一个blockGenerator,该组件,在数据接收中,极其重要
        blockGenerator.start()
      }


    ReceiverSupervisorImpl类的onStart()方法,调用了blockGenerator.start()方法,跟进去看看

    ###org.apache.spark.streaming.receiver/BlockGenerator.scala
    
      def start() {
        // BlockGenerator.start()方法,其实就是启动内部两个关键的后台线程,
        // 一个是blockIntervalTimer,负责将currentBuffer中的原始数据,打包成一个个的block
        // 另一个是blockPushingThread,负责将blocksForPushing中的block,调用pushArrayBuffer()方法
        blockIntervalTimer.start()
        blockPushingThread.start()
        logInfo("Started BlockGenerator")
      }


    blockGenerator.start()方法,调用了blockIntervalTimer.start()和blockPushingThread.start()方法
    先看看有关变量的定义

    ###org.apache.spark.streaming.receiver/BlockGenerator.scala
    
    private val blockInterval = conf.getLong("spark.streaming.blockInterval", 200)
      // blockInterval,是有一个默认值的,spark.streaming.blockInterval,默认是200ms,每隔200ms,就会调用updateCurrentBuffer函数
      private val blockIntervalTimer =
        new RecurringTimer(clock, blockInterval, updateCurrentBuffer, "BlockGenerator")
      // blocksForPushing队列的长度,可以调节的,spark.streaming.blockQueueSize,默认10个,可大可小
      private val blockQueueSize = conf.getInt("spark.streaming.blockQueueSize", 10)
      // blocksForPushing队列,
      private val blocksForPushing = new ArrayBlockingQueue[Block](blockQueueSize)
      // blockPushingThread,后台线程,启动之后,就会调用keepPushingBlocks()方法,这个方法中,就会每隔一段时间,去blocksForPushing队列中取block
      private val blockPushingThread = new Thread() { override def run() { keepPushingBlocks() } }
     
      // 这个currentBuffer,就是用于存放原始的数据
      @volatile private var currentBuffer = new ArrayBuffer[Any]


    blockIntervalTimer.start()就是一个线程,这个方法就不看了
    重点看下blockPushingThread.start()方法,这个线程开始运行,会调用keepPushingBlocks()方法,代码如下

    ###org.apache.spark.streaming.receiver/BlockGenerator.scala
    
      private val blockPushingThread = new Thread() { override def run() { keepPushingBlocks() } }


    看keepPushingBlocks()方法

    ###org.apache.spark.streaming.receiver/BlockGenerator.scala
    
    private def keepPushingBlocks() {
        logInfo("Started block pushing thread")
        try {
          while(!stopped) {
            // 从blocksForPushing这个队列中,poll出来当前队列队首的block,对于阻塞队列,默认设置100ms的超时
            Option(blocksForPushing.poll(100, TimeUnit.MILLISECONDS)) match {
                // 如果拿到了block,调用pushBlock去推送block
              case Some(block) => pushBlock(block)
              case None =>
            }
          }
          // Push out the blocks that are still left
          logInfo("Pushing out the last " + blocksForPushing.size() + " blocks")
          while (!blocksForPushing.isEmpty) {
            logDebug("Getting block ")
            val block = blocksForPushing.take()
            pushBlock(block)
            logInfo("Blocks left to push " + blocksForPushing.size())
          }
          logInfo("Stopped block pushing thread")
        } catch {
          case ie: InterruptedException =>
            logInfo("Block pushing thread was interrupted")
          case e: Exception =>
            reportError("Error in block pushing thread", e)
        }
      }


    可以看到keepPushingBlocks()方法,如果拿到了block,调用pushBlock()方法
    看看pushBlock()方法

    ###org.apache.spark.streaming.receiver/BlockGenerator.scala
    
      private def pushBlock(block: Block) {
        listener.onPushBlock(block.id, block.buffer)
        logInfo("Pushed block " + block.id)
      }


    pushBlock()方法会调用listener.onPushBlock()方法,这个listener是BlockGeneratorListener,onPushBlock()在ReceiverSupervisorImpl类中,
    看ReceiverSupervisorImpl类的onPushBlock()方法:

    ###org.apache.spark.streaming.receiver/ReceiverSupervisorImpl.scala
    
        // onPushBlock就会去调用pushArrayBuffer去推送block
        def onPushBlock(blockId: StreamBlockId, arrayBuffer: ArrayBuffer[_]) {
          pushArrayBuffer(arrayBuffer, None, Some(blockId))
        }

    onPushBlock就会去调用pushArrayBuffer()方法
    看pushArrayBuffer()方法:

    ###org.apache.spark.streaming.receiver/ReceiverSupervisorImpl.scala
    
      def pushArrayBuffer(
          arrayBuffer: ArrayBuffer[_],
          metadataOption: Option[Any],
          blockIdOption: Option[StreamBlockId]
        ) {
        pushAndReportBlock(ArrayBufferBlock(arrayBuffer), metadataOption, blockIdOption)
      }


    接着看pushAndReportBlock()方法:

    ###org.apache.spark.streaming.receiver/ReceiverSupervisorImpl.scala
    
      def pushAndReportBlock(
          receivedBlock: ReceivedBlock,
          metadataOption: Option[Any],
          blockIdOption: Option[StreamBlockId]
        ) {
        val blockId = blockIdOption.getOrElse(nextBlockId)
        val numRecords = receivedBlock match {
          case ArrayBufferBlock(arrayBuffer) => arrayBuffer.size
          case _ => -1
        }
     
        val time = System.currentTimeMillis
        // 还用receivedBlockHandler,去调用storeBlock方法,存储block到BlockManager中,这里,也可以看出预写日志的机制
        val blockStoreResult = receivedBlockHandler.storeBlock(blockId, receivedBlock)
        logDebug(s"Pushed block $blockId in ${(System.currentTimeMillis - time)} ms")
     
        // 封装一个ReceiverBlockInfo对象,里面有一个streamId
        val blockInfo = ReceivedBlockInfo(streamId, numRecords, blockStoreResult)
        // 调用了ReceiverTracker的Acrot的ask方法,发送AddBlock消息
        val future = trackerActor.ask(AddBlock(blockInfo))(askTimeout)
        Await.result(future, askTimeout)
        logDebug(s"Reported block $blockId")
      }


    这里主要看receivedBlockHandler.storeBlock()方法和trackerActor.ask(AddBlock(blockInfo))(askTimeout)
    首先看receivedBlockHandler.storeBlock(),看看receivedBlockHandler是什么

    ###org.apache.spark.streaming.receiver/ReceiverSupervisorImpl.scala
    
    private val receivedBlockHandler: ReceivedBlockHandler = {
        // 如果开启了预写日志机制,spark.streaming.receiver.writeAheadLog.enable,默认false
        // 如果为true,那么receivedBlockHandler就是WriteAheadLogBasedBlockHandler
        // 如果没有开启预写日志机制,那么receivedBlockHandler就是BlockManagerBasedBlockHandler
        if (env.conf.getBoolean("spark.streaming.receiver.writeAheadLog.enable", false)) {
          if (checkpointDirOption.isEmpty) {
            throw new SparkException(
              "Cannot enable receiver write-ahead log without checkpoint directory set. " +
                "Please use streamingContext.checkpoint() to set the checkpoint directory. " +
                "See documentation for more details.")
          }
          new WriteAheadLogBasedBlockHandler(env.blockManager, receiver.streamId,
            receiver.storageLevel, env.conf, hadoopConf, checkpointDirOption.get)
        } else {
          new BlockManagerBasedBlockHandler(env.blockManager, receiver.storageLevel)
        }


    接着分别看BlockManagerBasedBlockHandler和WriteAheadLogBasedBlockHandler的storeBlock()方法
    先看WriteAheadLogBasedBlockHandler

    ###org.apache.spark.streaming.receiver/ReceivedBlockHandler.scala
    
    def storeBlock(blockId: StreamBlockId, block: ReceivedBlock): ReceivedBlockStoreResult = {
     
        // Serialize the block so that it can be inserted into both
        // 先用BlockManager序列化数据
        val serializedBlock = block match {
          case ArrayBufferBlock(arrayBuffer) =>
            blockManager.dataSerialize(blockId, arrayBuffer.iterator)
          case IteratorBlock(iterator) =>
            blockManager.dataSerialize(blockId, iterator)
          case ByteBufferBlock(byteBuffer) =>
            byteBuffer
          case _ =>
            throw new Exception(s"Could not push $blockId to block manager, unexpected block type")
        }
     
        // Store the block in block manager
        // 将数据保存到BlockManager中去,默认的持久化策略,StorageLevel,是带_SER,_2的,会序列化,复制一份副本到其他Executor的BlockManager,以供容错
        val storeInBlockManagerFuture = Future {
          val putResult =
            blockManager.putBytes(blockId, serializedBlock, effectiveStorageLevel, tellMaster = true)
          if (!putResult.map { _._1 }.contains(blockId)) {
            throw new SparkException(
              s"Could not store $blockId to block manager with storage level $storageLevel")
          }
        }
     
        // Store the block in write ahead log
        // 将block存入预写日志,通过logManager的writeToLog()方法
        val storeInWriteAheadLogFuture = Future {
          logManager.writeToLog(serializedBlock)
        }
     
        // Combine the futures, wait for both to complete, and return the write ahead log segment
        val combinedFuture = storeInBlockManagerFuture.zip(storeInWriteAheadLogFuture).map(_._2)
        val segment = Await.result(combinedFuture, blockStoreTimeout)
        WriteAheadLogBasedStoreResult(blockId, segment)
      }


    再看BlockManagerBasedBlockHandler

    ###org.apache.spark.streaming.receiver/ReceivedBlockHandler.scala
    
     // 直接将数据保存到BlockManager中,就可以了
      def storeBlock(blockId: StreamBlockId, block: ReceivedBlock): ReceivedBlockStoreResult = {
        val putResult: Seq[(BlockId, BlockStatus)] = block match {
          case ArrayBufferBlock(arrayBuffer) =>
            blockManager.putIterator(blockId, arrayBuffer.iterator, storageLevel, tellMaster = true)
          case IteratorBlock(iterator) =>
            blockManager.putIterator(blockId, iterator, storageLevel, tellMaster = true)
          case ByteBufferBlock(byteBuffer) =>
            blockManager.putBytes(blockId, byteBuffer, storageLevel, tellMaster = true)
          case o =>
            throw new SparkException(
              s"Could not store $blockId to block manager, unexpected block type ${o.getClass.getName}")
        }
        if (!putResult.map { _._1 }.contains(blockId)) {
          throw new SparkException(
            s"Could not store $blockId to block manager with storage level $storageLevel")
        }
        BlockManagerBasedStoreResult(blockId)
      }


    接着看trackerActor.ask(AddBlock(blockInfo))(askTimeout),会发一个AddBlock消息到ReceiverTracker,进入看一下:

    ###org.apache.spark.streaming.scheduler/ReceiverTracker.scala
    
      private def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {
        receivedBlockTracker.addBlock(receivedBlockInfo)
      }


    接着看receivedBlockTracker的addBlock方法,除了这个方法之外,还看receivedBlockTracker的几个重要变量,
    先看方法:

    ###org.apache.spark.streaming.scheduler/ReceivedBlockTracker.scala
    
      def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = synchronized {
        try {
          writeToLog(BlockAdditionEvent(receivedBlockInfo))
          getReceivedBlockQueue(receivedBlockInfo.streamId) += receivedBlockInfo
          logDebug(s"Stream ${receivedBlockInfo.streamId} received " +
            s"block ${receivedBlockInfo.blockStoreResult.blockId}")
          true
        } catch {
          case e: Exception =>
            logError(s"Error adding block $receivedBlockInfo", e)
            false
        }
      }


    再看变量

    ###org.apache.spark.streaming.scheduler/ReceivedBlockTracker.scala
    
    // 封装了streamId到block的映射
      private val streamIdToUnallocatedBlockQueues = new mutable.HashMap[Int, ReceivedBlockQueue]
      // 封装了time到block的映射
      private val timeToAllocatedBlocks = new mutable.HashMap[Time, AllocatedBlocks]
      // 如果开启了预写机制机制,这还有LogManager,ReceiverTracker接收到数据时,也会判断,
      // 如果开启了预写日志机制,写一份到预写日志中
      private val logManagerOption = createLogManager()
  • 相关阅读:
    第一节 软件测试概述(2)
    第一节 软件测试概述(1)
    Sql语句,查询效率
    Js cdn 学习
    Java内部类详解
    UML用例图
    UML类图几种关系的总结
    JFinal框架_定时触发程序
    利用EXCEL函数LINEST进行统计学中的回归分析
    Windows 10 64 Bit 编译安装 PyLucene 8.3.0
  • 原文地址:https://www.cnblogs.com/weiyiming007/p/11387719.html
Copyright © 2020-2023  润新知