• python德国信用评分卡建模(附代码AAA推荐)


     python信用评分卡建模视频系列教程(附代码)  博主录制

    Minimization of risk and maximization of profit on behalf of the bank.

    To minimize loss from the bank’s perspective, the bank needs a decision rule regarding who to give approval of the loan and who not to. An applicant’s demographic and socio-economic profiles are considered by loan managers before a decision is taken regarding his/her loan application.

    The German Credit Data contains data on 20 variables and the classification whether an applicant is considered a Good or a Bad credit risk for 1000 loan applicants. Here is a link to the German Credit data (right-click and "save as" ).  A predictive model developed on this data is expected to provide a bank manager guidance for making a decision whether to approve a loan to a prospective applicant based on his/her profiles.

    信用评分系统应用

    http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

    account balance 账户余额

    duration of credit

    Data Set Information:

    Two datasets are provided. the original dataset, in the form provided by Prof. Hofmann, contains categorical/symbolic attributes and is in the file "german.data". 

    For algorithms that need numerical attributes, Strathclyde University produced the file "german.data-numeric". This file has been edited and several indicator variables added to make it suitable for algorithms which cannot cope with categorical variables. Several attributes that are ordered categorical (such as attribute 17) have been coded as integer. This was the form used by StatLog. 

    This dataset requires use of a cost matrix (see below) 

    ..... 1 2 
    ---------------------------- 
    1 0 1 
    ----------------------- 
    2 5 0 

    (1 = Good, 2 = Bad) 

    The rows represent the actual classification and the columns the predicted classification. 

    It is worse to class a customer as good when they are bad (5), than it is to class a customer as bad when they are good (1). 

    Attribute Information:

    Attribute 1: (qualitative) 
    Status of existing checking account 
    A11 : ... < 0 DM 
    A12 : 0 <= ... < 200 DM 
    A13 : ... >= 200 DM / salary assignments for at least 1 year 
    A14 : no checking account 

    Attribute 2: (numerical) 
    Duration in month 

    Attribute 3: (qualitative) 
    Credit history 
    A30 : no credits taken/ all credits paid back duly 
    A31 : all credits at this bank paid back duly 
    A32 : existing credits paid back duly till now 
    A33 : delay in paying off in the past 
    A34 : critical account/ other credits existing (not at this bank) 

    Attribute 4: (qualitative) 
    Purpose 
    A40 : car (new) 
    A41 : car (used) 
    A42 : furniture/equipment 
    A43 : radio/television 
    A44 : domestic appliances 
    A45 : repairs 
    A46 : education 
    A47 : (vacation - does not exist?) 
    A48 : retraining 
    A49 : business 
    A410 : others 

    Attribute 5: (numerical) 
    Credit amount 

    Attibute 6: (qualitative) 
    Savings account/bonds 
    A61 : ... < 100 DM 
    A62 : 100 <= ... < 500 DM 
    A63 : 500 <= ... < 1000 DM 
    A64 : .. >= 1000 DM 
    A65 : unknown/ no savings account 

    Attribute 7: (qualitative) 
    Present employment since 
    A71 : unemployed 
    A72 : ... < 1 year 
    A73 : 1 <= ... < 4 years 
    A74 : 4 <= ... < 7 years 
    A75 : .. >= 7 years 

    Attribute 8: (numerical) 
    Installment rate in percentage of disposable income 

    Attribute 9: (qualitative) 
    Personal status and sex 
    A91 : male : divorced/separated 
    A92 : female : divorced/separated/married 
    A93 : male : single 
    A94 : male : married/widowed 
    A95 : female : single 

    Attribute 10: (qualitative) 
    Other debtors / guarantors 
    A101 : none 
    A102 : co-applicant 
    A103 : guarantor 

    Attribute 11: (numerical) 
    Present residence since 

    Attribute 12: (qualitative) 
    Property 
    A121 : real estate 
    A122 : if not A121 : building society savings agreement/ life insurance 
    A123 : if not A121/A122 : car or other, not in attribute 6 
    A124 : unknown / no property 

    Attribute 13: (numerical) 
    Age in years 

    Attribute 14: (qualitative) 
    Other installment plans 
    A141 : bank 
    A142 : stores 
    A143 : none 

    Attribute 15: (qualitative) 
    Housing 
    A151 : rent 
    A152 : own 
    A153 : for free 

    Attribute 16: (numerical) 
    Number of existing credits at this bank 

    Attribute 17: (qualitative) 
    Job 
    A171 : unemployed/ unskilled - non-resident 
    A172 : unskilled - resident 
    A173 : skilled employee / official 
    A174 : management/ self-employed/ 
    highly qualified employee/ officer 

    Attribute 18: (numerical) 
    Number of people being liable to provide maintenance for 

    Attribute 19: (qualitative) 
    Telephone 
    A191 : none 
    A192 : yes, registered under the customers name 

    Attribute 20: (qualitative) 
    foreign worker 
    A201 : yes 
    A202 : no 

    It is worse to class a customer as good when they are bad (5),

    than it is to class a customer as bad when they are good (1).

    randomForest.py

    random forest with 1000 trees:
    accuracy on the training subset:1.000
    accuracy on the test subset:0.772

    准确性高于决策树

    # -*- coding: utf-8 -*-
    """
    Created on Sat Mar 31 09:30:24 2018
    
    @author: Administrator
    随机森林不需要预处理数据
    """
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    
    trees=1000
    #读取文件
    readFileName="German_credit.xlsx"
    
    #读取excel
    df=pd.read_excel(readFileName)
    list_columns=list(df.columns[:-1])
    X=df.ix[:,:-1]
    y=df.ix[:,-1]
    names=X.columns
    
    x_train,x_test,y_train,y_test=train_test_split(X,y,random_state=0)
    #n_estimators表示树的个数,测试中100颗树足够
    forest=RandomForestClassifier(n_estimators=trees,random_state=0)
    forest.fit(x_train,y_train)
    
    print("random forest with %d trees:"%trees)  
    print("accuracy on the training subset:{:.3f}".format(forest.score(x_train,y_train)))
    print("accuracy on the test subset:{:.3f}".format(forest.score(x_test,y_test)))
    print('Feature importances:{}'.format(forest.feature_importances_))
    
    n_features=X.shape[1]
    plt.barh(range(n_features),forest.feature_importances_,align='center')
    plt.yticks(np.arange(n_features),names)
    plt.title("random forest with %d trees:"%trees)
    plt.xlabel('Feature Importance')
    plt.ylabel('Feature')
    plt.show()
    

      

    比较之前

    自己绘制树图

    准确率不高,且严重过度拟合

    accuracy on the training subset:0.991
    accuracy on the test subset:0.680
    # -*- coding: utf-8 -*-
    """
    Created on Tue Apr 24 21:54:44 2018
    
    @author: Administrator
    """
    
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.ensemble import RandomForestClassifier
    import matplotlib.pyplot as plt
    import numpy as np
    import pydotplus 
    from IPython.display import Image
    import graphviz
    from sklearn.tree import export_graphviz
    from sklearn.datasets import load_breast_cancer
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
    
    trees=1000
    #读取文件
    readFileName="German_credit.xlsx"
    
    #读取excel
    df=pd.read_excel(readFileName)
    list_columns=list(df.columns[:-1])
    x=df.ix[:,:-1]
    y=df.ix[:,-1]
    names=x.columns
    
    x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0)
    #调参
    list_average_accuracy=[]
    depth=range(1,30)
    for i in depth:
        #max_depth=4限制决策树深度可以降低算法复杂度,获取更精确值
        tree= DecisionTreeClassifier(max_depth=i,random_state=0)
        tree.fit(x_train,y_train)
        accuracy_training=tree.score(x_train,y_train)
        accuracy_test=tree.score(x_test,y_test)
        average_accuracy=(accuracy_training+accuracy_test)/2.0
        #print("average_accuracy:",average_accuracy)
        list_average_accuracy.append(average_accuracy)
        
    max_value=max(list_average_accuracy)
    #索引是0开头,结果要加1
    best_depth=list_average_accuracy.index(max_value)+1
    print("best_depth:",best_depth)
    
    best_tree= DecisionTreeClassifier(max_depth=best_depth,random_state=0)
    best_tree.fit(x_train,y_train)
    accuracy_training=best_tree.score(x_train,y_train)
    accuracy_test=best_tree.score(x_test,y_test)
    print("decision tree:")    
    print("accuracy on the training subset:{:.3f}".format(best_tree.score(x_train,y_train)))
    print("accuracy on the test subset:{:.3f}".format(best_tree.score(x_test,y_test)))
    
    n_features=x.shape[1]
    plt.barh(range(n_features),best_tree.feature_importances_,align='center')
    plt.yticks(np.arange(n_features),names)
    plt.title("Decision Tree:")
    plt.xlabel('Feature Importance')
    plt.ylabel('Feature')
    plt.show()
    
    #生成一个dot文件,以后用cmd形式生成图片
    export_graphviz(best_tree,out_file="creditTree.dot",class_names=['bad','good'],feature_names=names,impurity=False,filled=True)
    
    
    
    '''
    best_depth: 12
    decision tree:
    accuracy on the training subset:0.991
    accuracy on the test subset:0.680
    '''
    

      

     支持向量最高预测率

    accuracy on the scaled training subset:0.867
    accuracy on the scaled test subset:0.800
    效果高于随机森林0.8-0.772=0.028
    # -*- coding: utf-8 -*-
    """
    Created on Fri Mar 30 21:57:29 2018
    
    @author: Administrator
    SVM需要标准化数据处理
    """
    #标准化数据
    from sklearn import preprocessing
    from sklearn.svm import SVC
    from sklearn.model_selection import train_test_split
    import matplotlib.pyplot as plt
    import pandas as pd
    
    #读取文件
    readFileName="German_credit.xlsx"
    
    #读取excel
    df=pd.read_excel(readFileName)
    list_columns=list(df.columns[:-1])
    x=df.ix[:,:-1]
    y=df.ix[:,-1]
    names=x.columns
    
    #random_state 相当于随机数种子
    X_train,x_test,y_train,y_test=train_test_split(x,y,stratify=y,random_state=42)
    svm=SVC()
    svm.fit(X_train,y_train)
    print("accuracy on the training subset:{:.3f}".format(svm.score(X_train,y_train)))
    print("accuracy on the test subset:{:.3f}".format(svm.score(x_test,y_test)))
    
    '''
    accuracy on the training subset:1.000
    accuracy on the test subset:0.700
    
    '''
    
    #观察数据是否标准化
    plt.plot(X_train.min(axis=0),'o',label='Min')
    plt.plot(X_train.max(axis=0),'v',label='Max')
    plt.xlabel('Feature Index')
    plt.ylabel('Feature magnitude in log scale')
    plt.yscale('log')
    plt.legend(loc='upper right')
    
    #标准化数据
    X_train_scaled = preprocessing.scale(X_train)
    x_test_scaled = preprocessing.scale(x_test)
    svm1=SVC()
    svm1.fit(X_train_scaled,y_train)
    print("accuracy on the scaled training subset:{:.3f}".format(svm1.score(X_train_scaled,y_train)))
    print("accuracy on the scaled test subset:{:.3f}".format(svm1.score(x_test_scaled,y_test)))
    '''
    accuracy on the scaled training subset:0.867
    accuracy on the scaled test subset:0.800
    '''
    
    
    
    #改变C参数,调优,kernel表示核函数,用于平面转换,probability表示是否需要计算概率
    svm2=SVC(C=10,gamma="auto",kernel='rbf',probability=True)
    svm2.fit(X_train_scaled,y_train)
    print("after c parameter=10,accuracy on the scaled training subset:{:.3f}".format(svm2.score(X_train_scaled,y_train)))
    print("after c parameter=10,accuracy on the scaled test subset:{:.3f}".format(svm2.score(x_test_scaled,y_test)))
    '''
    after c parameter=10,accuracy on the scaled training subset:0.972
    after c parameter=10,accuracy on the scaled test subset:0.716
    '''
    
    
    #计算样本点到分割超平面的函数距离
    #print (svm2.decision_function(X_train_scaled))
    
    #print (svm2.decision_function(X_train_scaled)[:20]>0)
    #支持向量机分类
    #print(svm2.classes_)
    
    #malignant和bening概率计算,输出结果包括恶性概率和良性概率
    #print(svm2.predict_proba(x_test_scaled))
    #判断数据属于哪一类,0或1表示
    #print(svm2.predict(x_test_scaled))
    

      

     神经网络

    效果不如支持向量和随机森林

    最好概率

    accuracy on the training subset:0.916
    accuracy on the test subset:0.720

    
    
    # -*- coding: utf-8 -*-
    """
    Created on Sun Apr  1 11:49:50 2018
    
    @author: Administrator
    神经网络需要预处理数据
    """
    #Multi-layer Perceptron 多层感知机
    from sklearn.neural_network import MLPClassifier
    #标准化数据,否则神经网络结果不准确,和SVM类似
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
    import mglearn
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    
    #读取文件
    readFileName="German_credit.xlsx"
    
    #读取excel
    df=pd.read_excel(readFileName)
    list_columns=list(df.columns[:-1])
    x=df.ix[:,:-1]
    y=df.ix[:,-1]
    names=x.columns
    
    #random_state 相当于随机数种子
    x_train,x_test,y_train,y_test=train_test_split(x,y,stratify=y,random_state=42)
    mlp=MLPClassifier(random_state=42)
    mlp.fit(x_train,y_train)
    print("neural network:")    
    print("accuracy on the training subset:{:.3f}".format(mlp.score(x_train,y_train)))
    print("accuracy on the test subset:{:.3f}".format(mlp.score(x_test,y_test)))
    
    scaler=StandardScaler()
    x_train_scaled=scaler.fit(x_train).transform(x_train)
    x_test_scaled=scaler.fit(x_test).transform(x_test)
    
    mlp_scaled=MLPClassifier(max_iter=1000,random_state=42)
    mlp_scaled.fit(x_train_scaled,y_train)
    print("neural network after scaled:")    
    print("accuracy on the training subset:{:.3f}".format(mlp_scaled.score(x_train_scaled,y_train)))
    print("accuracy on the test subset:{:.3f}".format(mlp_scaled.score(x_test_scaled,y_test)))
    
    
    mlp_scaled2=MLPClassifier(max_iter=1000,alpha=1,random_state=42)
    mlp_scaled2.fit(x_train_scaled,y_train)
    print("neural network after scaled and alpha change to 1:")    
    print("accuracy on the training subset:{:.3f}".format(mlp_scaled2.score(x_train_scaled,y_train)))
    print("accuracy on the test subset:{:.3f}".format(mlp_scaled2.score(x_test_scaled,y_test)))
    
    
    #绘制颜色图,热图
    plt.figure(figsize=(20,5))
    plt.imshow(mlp_scaled.coefs_[0],interpolation="None",cmap="GnBu")
    plt.yticks(range(30),names)
    plt.xlabel("columns in weight matrix")
    plt.ylabel("input feature")
    plt.colorbar()
    
    '''
    neural network:
    accuracy on the training subset:0.700
    accuracy on the test subset:0.700
    neural network after scaled:
    accuracy on the training subset:1.000
    accuracy on the test subset:0.704
    neural network after scaled and alpha change to 1:
    accuracy on the training subset:0.916
    accuracy on the test subset:0.720
    '''
    

      

    xgboost

    区分能力还可以

    AUC: 0.8134
    ACC: 0.7720
    Recall: 0.9521
    F1-score: 0.8480
    Precesion: 0.7644

    # -*- coding: utf-8 -*-
    """
    Created on Tue Apr 24 22:42:47 2018
    
    @author: Administrator
    出现module 'xgboost' has no attribute 'DMatrix'的临时解决方法
    初学者或者说不太了解Python才会犯这种错误,其实只需要注意一点!不要使用任何模块名作为文件名,任何类型的文件都不可以!我的错误根源是在文件夹中使用xgboost.*的文件名,当import xgboost时会首先在当前文件中查找,才会出现这样的问题。
            所以,再次强调:不要用任何的模块名作为文件名!
    """
    import xgboost as xgb
    from sklearn.cross_validation import train_test_split
    import pandas as pd
    import matplotlib.pylab as plt
    
    
    #读取文件
    readFileName="German_credit.xlsx"
    
    #读取excel
    df=pd.read_excel(readFileName)
    list_columns=list(df.columns[:-1])
    x=df.ix[:,:-1]
    y=df.ix[:,-1]
    names=x.columns
    
    train_x, test_x, train_y, test_y=train_test_split(x,y,random_state=0)
    
    dtrain=xgb.DMatrix(train_x,label=train_y)
    dtest=xgb.DMatrix(test_x)
    
    params={'booster':'gbtree',
        #'objective': 'reg:linear',
        'objective': 'binary:logistic',
        'eval_metric': 'auc',
        'max_depth':4,
        'lambda':10,
        'subsample':0.75,
        'colsample_bytree':0.75,
        'min_child_weight':2,
        'eta': 0.025,
        'seed':0,
        'nthread':8,
         'silent':1}
    
    watchlist = [(dtrain,'train')]
    
    bst=xgb.train(params,dtrain,num_boost_round=100,evals=watchlist)
    
    ypred=bst.predict(dtest)
    
    # 设置阈值, 输出一些评价指标
    y_pred = (ypred >= 0.5)*1
    
    #模型校验
    from sklearn import metrics
    print ('AUC: %.4f' % metrics.roc_auc_score(test_y,ypred))
    print ('ACC: %.4f' % metrics.accuracy_score(test_y,y_pred))
    print ('Recall: %.4f' % metrics.recall_score(test_y,y_pred))
    print ('F1-score: %.4f' %metrics.f1_score(test_y,y_pred))
    print ('Precesion: %.4f' %metrics.precision_score(test_y,y_pred))
    metrics.confusion_matrix(test_y,y_pred)
    
    
    
    print("xgboost:")  
    #print("accuracy on the training subset:{:.3f}".format(bst.get_score(train_x,train_y)))
    #print("accuracy on the test subset:{:.3f}".format(bst.get_score(test_x,test_y)))
    print('Feature importances:{}'.format(bst.get_fscore()))
    
    
    '''
    AUC: 0.8135
    ACC: 0.7640
    Recall: 0.9641
    F1-score: 0.8451
    Precesion: 0.7523
    
    #特征重要性和随机森林差不多
    Feature importances:{'Account Balance': 80, 'Duration of Credit (month)': 119,
     'Most valuable available asset': 54, 'Payment Status of Previous Credit': 84, 
     'Value Savings/Stocks': 66, 'Age (years)': 94, 'Credit Amount': 149, 
     'Type of apartment': 20, 'Instalment per cent': 37,
     'Length of current employment': 70, 'Sex & Marital Status': 29,
     'Purpose': 67, 'Occupation': 13, 'Duration in Current address': 25,
     'Telephone': 15, 'Concurrent Credits': 23, 'No of Credits at this Bank': 7, 
     'Guarantors': 28, 'No of dependents': 6}
    '''
    

      

     最终结论:

    xgboost 有时候特征重要性分析比随机森林还准确,可见其强大之处

    随机森林重要因子排序    xgboost权重指数
    Credit amount信用保证金  149
    age 年龄                            94
    account balance 账户余额 80
    duration of credit持卡时间 119 (信用卡逾期时间,每个银行有所不同,以招商银行为例,两个月就会被停卡)

    2018-9-18数据更新

    逻辑回归验证数据和catboost验证数据差不多,可见逻辑回归稳定性

    # -*- coding: utf-8 -*-
    """
    作者邮箱 231469242@qq.com
    
    技术文档
    https://www.cnblogs.com/webRobot/p/7216614.html
    model accuracy is: 0.755
    model precision is: 0.697841726618705
    model sensitivity is: 0.3233333333333333
    f1_score: 0.44191343963553525
    AUC: 0.7626619047619048
    
    根据iv值删除后预测结果没有变量完全保留的高
    model accuracy is: 0.724
    model precision is: 0.61320754717
    model sensitivity is: 0.216666666667
    f1_score: 0.320197044335
    AUC: 0.7031
    good classifier
    
    
    带入German_credit原始数据结果
    accuracy on the training subset:0.777
    accuracy on the test subset:0.740
    A: 6.7807190511263755
    B: 14.426950408889635
    model accuracy is: 0.74
    model precision is: 0.7037037037037037
    model sensitivity is: 0.38
    f1_score: 0.49350649350649356
    AUC: 0.7885
    """
    import math
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
    from sklearn.cross_validation import train_test_split
    from sklearn.linear_model.logistic import LogisticRegression
    from sklearn.metrics import accuracy_score
    from sklearn.cross_validation import cross_val_score
    import statsmodels.api as sm
    #混淆矩阵计算
    from sklearn import metrics
    from sklearn.metrics import roc_curve, auc,roc_auc_score
    from sklearn.metrics import precision_score
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import recall_score
    from sklearn.metrics import f1_score
    
    #df_german=pd.read_excel("german_woe.xlsx")
    df_german=pd.read_excel("german_credit.xlsx")
    #df_german=pd.read_excel("df_after_vif.xlsx")
    y=df_german["target"]
    x=df_german.ix[:,"Account Balance":"Foreign Worker"]
    #x=df_german.ix[:,"Credit Amount":"Purpose"]
    X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)
    
    classifier = LogisticRegression()
    classifier.fit(X_train, y_train)
    predictions = classifier.predict(X_test)
    
    #验证
    print("accuracy on the training subset:{:.3f}".format(classifier.score(X_train,y_train)))
    print("accuracy on the test subset:{:.3f}".format(classifier.score(X_test,y_test)))
    
    
    
    
    #得分公式
    '''
    P0 = 50
    PDO = 10
    theta0 = 1.0/20
    B = PDO/np.log(2)
    A = P0 + B*np.log(theta0)
    '''
    def Score(probability):
        #底数是e
        score = A-B*np.log(probability/(1-probability))
        return score
    #批量获取得分
    def List_score(pos_probablity_list):
        list_score=[]
        for probability in pos_probablity_list:
            score=Score(probability)
            list_score.append(score)
        return list_score
    
    P0 = 50
    PDO = 10
    theta0 = 1.0/20
    B = PDO/np.log(2)
    A = P0 + B*np.log(theta0)
    print("A:",A)
    print("B:",B)
    list_coef = list(classifier.coef_[0])
    intercept= classifier.intercept_
    
    #获取所有x数据的预测概率,包括好客户和坏客户,0为好客户,1为坏客户
    probablity_list=classifier.predict_proba(x)
    #获取所有x数据的坏客户预测概率
    pos_probablity_list=[i[1] for i in probablity_list]
    #获取所有客户分数
    list_score=List_score(pos_probablity_list)
    list_predict=classifier.predict(x)
    df_result=pd.DataFrame({"label":y,"predict":list_predict,"pos_probablity":pos_probablity_list,"score":list_score})
    
    df_result.to_excel("score_proba.xlsx")
    
    #变量名列表
    list_vNames=df_german.columns
    #去掉第一个变量名target
    list_vNames=list_vNames[1:]
    df_coef=pd.DataFrame({"variable_names":list_vNames,"coef":list_coef})
    df_coef.to_excel("coef.xlsx")
    
    
    y_true=y_test
    y_pred=classifier.predict(X_test)
    accuracyScore = accuracy_score(y_true, y_pred)
    print('model accuracy is:',accuracyScore)
    
    #precision,TP/(TP+FP) (真阳性)/(真阳性+假阳性)
    precision=precision_score(y_true, y_pred)
    print('model precision is:',precision)
    
    #recall(sensitive)敏感度,(TP)/(TP+FN)
    sensitivity=recall_score(y_true, y_pred)
    print('model sensitivity is:',sensitivity)
     
    #F1 = 2 x (精确率 x 召回率) / (精确率 + 召回率)
    #F1 分数会同时考虑精确率和召回率,以便计算新的分数。可将 F1 分数理解为精确率和召回率的加权平均值,其中 F1 分数的最佳值为 1、最差值为 0:
    f1Score=f1_score(y_true, y_pred)
    print("f1_score:",f1Score)
    
    def AUC(y_true, y_scores):
        auc_value=0
        #auc第二种方法是通过fpr,tpr,通过auc(fpr,tpr)来计算AUC
        fpr, tpr, thresholds = metrics.roc_curve(y_true, y_scores, pos_label=1)
        auc_value= auc(fpr,tpr) ###计算auc的值 
        #print("fpr:",fpr)
        #print("tpr:",tpr)
        #print("thresholds:",thresholds)
        if auc_value<0.5:
            auc_value=1-auc_value
        return auc_value
    
    def Draw_roc(auc_value):
        fpr, tpr, thresholds = metrics.roc_curve(y, list_score, pos_label=0)
        #画对角线 
        plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Diagonal line') 
        plt.plot(fpr,tpr,label='ROC curve (area = %0.2f)' % auc_value) 
        plt.title('ROC curve')  
        plt.legend(loc="lower right")
    
    #评价AUC表现
    def AUC_performance(AUC):
        if AUC >=0.7:
            print("good classifier")
        if 0.7>AUC>0.6:
            print("not very good classifier")
        if 0.6>=AUC>0.5:
            print("useless classifier")
        if 0.5>=AUC:
            print("bad classifier,with sorting problems")
            
    #Auc验证,数据采用测试集数据
    auc_value=AUC(y, list_score)
    print("AUC:",auc_value)
    #评价AUC表现
    AUC_performance(auc_value)
    #绘制ROC曲线
    Draw_roc(auc_value)
    

      

    catboost脚本

    # -*- coding: utf-8 -*-
    """
    作者邮箱 231469242@qq.com
    
    技术文档
    https://www.cnblogs.com/webRobot/p/7216614.html
    catboost-
    accuracy on the training subset:1.000
    accuracy on the test subset:0.763
    test数据指标
    accuracy on the test subset:0.757
    model accuracy is: 0.7566666666666667
    model precision is: 0.813953488372093
    model sensitivity is: 0.35
    f1_score: 0.48951048951048953
    AUC: 0.7595999999999999
    """
    import catboost as cb
    import math
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
    from sklearn.cross_validation import train_test_split
    from sklearn.linear_model.logistic import LogisticRegression
    from sklearn.metrics import accuracy_score
    from sklearn.cross_validation import cross_val_score
    import statsmodels.api as sm
    #混淆矩阵计算
    from sklearn import metrics
    from sklearn.metrics import roc_curve, auc,roc_auc_score
    from sklearn.metrics import precision_score
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import recall_score
    from sklearn.metrics import f1_score
    
    #df_german=pd.read_excel("german_woe.xlsx")
    df_german=pd.read_excel("german_credit.xlsx")
    #df_german=pd.read_excel("df_after_vif.xlsx")
    y=df_german["target"]
    x=df_german.ix[:,"Account Balance":"Foreign Worker"]
    #x=df_german.ix[:,"Credit Amount":"Purpose"]
    X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)
    
    classifier = cb.CatBoostClassifier()
    classifier.fit(X_train, y_train)
    
    list_score=classifier.predict_proba(X_test)
    list_score=[i[1] for i in list_score]
    
    #验证
    print("accuracy on the training subset:{:.3f}".format(classifier.score(X_train,y_train)))
    print("accuracy on the test subset:{:.3f}".format(classifier.score(X_test,y_test)))
    
    list_predict=classifier.predict(x)
    y_true=y_test
    y_pred=classifier.predict(X_test)
    accuracyScore = accuracy_score(y_true, y_pred)
    print('model accuracy is:',accuracyScore)
    
    #precision,TP/(TP+FP) (真阳性)/(真阳性+假阳性)
    precision=precision_score(y_true, y_pred)
    print('model precision is:',precision)
    
    #recall(sensitive)敏感度,(TP)/(TP+FN)
    sensitivity=recall_score(y_true, y_pred)
    print('model sensitivity is:',sensitivity)
     
    #F1 = 2 x (精确率 x 召回率) / (精确率 + 召回率)
    #F1 分数会同时考虑精确率和召回率,以便计算新的分数。可将 F1 分数理解为精确率和召回率的加权平均值,其中 F1 分数的最佳值为 1、最差值为 0:
    f1Score=f1_score(y_true, y_pred)
    print("f1_score:",f1Score)
    
    def AUC(y_true, y_scores):
        auc_value=0
        #auc第二种方法是通过fpr,tpr,通过auc(fpr,tpr)来计算AUC
        fpr, tpr, thresholds = metrics.roc_curve(y_true, y_scores, pos_label=1)
        auc_value= auc(fpr,tpr) ###计算auc的值 
        #print("fpr:",fpr)
        #print("tpr:",tpr)
        #print("thresholds:",thresholds)
        if auc_value<0.5:
            auc_value=1-auc_value
        return auc_value
            
    #Auc验证,数据采用测试集数据
    auc_value=AUC(y_test, list_score)
    print("AUC:",auc_value)
    

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频)

    https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

    欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章

    机器学习,统计项目可联系QQ:231469242

     

     
  • 相关阅读:
    [HAOI2006] 旅行
    Vue 2 --v-model、局部组件和全局组件、父子组件传值、平行组件传值
    Flume简介及安装
    MySQL数据目录更改及相关问题解决方案
    更换gcc工具链
    支持多种类型的数据集合作为数据源
    23种设计模式--中介者模式-Mediator Pattern
    PID算法原理 一图看懂PID的三个参数
    内存四区
    趣味算法讲解
  • 原文地址:https://www.cnblogs.com/webRobot/p/8934253.html
Copyright © 2020-2023  润新知