• 所有的数据处理都是map-reduce


    用reduce求和

    const sum = [1,2,3,4,5,6].reduce((v,t)=>{
    
        return v+t;
       //第一次v=0,t=1
       //第二次v= 0+1,t=2
      //第三次v=1+2,t=3......
    },0)//reduce传入两个值,第一个是个函数,第二个是初始值

    map处理字符串然后用reduce

    const joined = 'this-is-an-example';
    joined
    .split('-')
    .map( word => {//用map将每个单词的第一个字符变成大写
        const [head,...others] = word
       console.log(head,others);
        return head.toUpperCase() + others.reduce((x,y) => x+y,'')
    })
    .reduce( (s,word)=>{
        console.log('word=='+word);
       return s+' '+word;
    })
    console.log(joined);

    map/reduce处理sql

    本质上所有数据处理过程(sql过程)都是map/reduce,所以可以使用map/reduce完成大量操作。而高阶函数让我们可以最大化复用这个计算过程

    //所有数据处理都是sql,用map/reduce完成一些sql操作
    //假设数据库中有一张成绩单,如下
    let students = {
      {id:1,name:'lucy',score:99,class:'a'},
      {id:2,name:'lily',score:88,class:'b'}
    }
    let selected = students.map( student => {
      return {name:student.name}//最终只会输出name这一字段的值
    })
    console.log(selected);
    
    //比如筛选所有分数大于80的学生 即select name from students where score>80
    let selected2 = students.reduce( (list,student) => {
      if(student.score > 80){
        list = [...list,student]
      }
      return list;
    },[])
    console.log(selected2);
    
    /*===================================================*/
    
    //对上述条件筛选的另一思路 map/reduce与高阶函数
    //先把函数提取出来,此时并没有用到高阶函数
    let selectScoreLargerThan80 = (list,student) => {
      if(student.score > 80){
        list = [...list,student];
      }
      return list;
    }
    //const selected_2 = students.reduce(selectScoreLargerThan80,[])
    //定义一个高阶函数filter,用于生成筛选条件
    const filter = (prediction) => {
      return (list,item) => {
        if(prediction(item)){
          list = [...list,item];
        }
      }
    }
    //使用filter增加筛选条件
    const selectScoreLargerThan80_2 = filter(item => item.score > 60)
    const selected_2_2 = students.reduce(selectScoreLargerThan80,[])
    
    /*=========================================*/
    //按照分数排序(倒序)
    //插入排序 select * from students order by score desc
    const sorted = students.reduce( (list,student) => {
      let i = 0;
      for(;i<list.length;i++){//这里是插入的过程,排序条件是可变的,所以可以把这部分封装到一个高阶函数
        if(list[i].score < student.score) break;
      }
      return [...list.slice(0,i),student,...list.slice(i,list.length)];//插入排序
    },[])
    
    /*========================================*/
    //按照班级进行排序(groupby),然后求最大分数,插入排序
    // select max(score) from students group by class
    
    //将学生按照class分组
    const grouped = students.reduce( (groups,student) => {
      if(!groups[student.class]){
        groups[student.class] = {key:student.class,values:[]}
      }
      groups[student.class].values.push(student)
      return groups
    },{})
    //提取为数组
    const arrGroups = Object.values(grouped);
    //计算每个分组的最大值
    const final = arrGroups.map(group => {
      return {
        class:group.key,
        max:group.values.reduce( (a,b) => {
          return b.score > a ? b.score : a;
        },0)
      }
    })
    console.log(final);
    
    /*===========================*/
    //使用原生的filter与find
    const selected = students.filter(student => student.score > 60)
    const student = students.find(student => student.id === 5)
    const sorted = students.sort((student1,student2) =>  student1.score < student2.score )

     整理自魏蒙老师视频

  • 相关阅读:
    事务的特性(ACID)
    网络代理
    防止SpringMVC拦截器拦截js等静态资源文件
    Tomcat配置虚拟目录
    SpringMVC总结(SSM)
    Spring声明式事务总结
    Linux中MySQL忽略表中字段大小写
    MySQL之sql文件的导入导出
    MyBatis总结
    Linux网络
  • 原文地址:https://www.cnblogs.com/web-fengmin/p/6564113.html
Copyright © 2020-2023  润新知