• 416. Partition Equal Subset Sum


    Problem statement:

    Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

    Note:

    1. Each of the array element will not exceed 100.
    2. The array size will not exceed 200.

    Example 1:

    Input: [1, 5, 11, 5]
    
    Output: true
    
    Explanation: The array can be partitioned as [1, 5, 5] and [11].

    Example 2:

    Input: [1, 2, 3, 5]
    
    Output: false
    
    Explanation: The array cannot be partitioned into equal sum subsets.

    Solution: DFS with return value(TLE).

    This problem can be solved by DFS with or without a return value. I choose a the DFS template with a bool return value. It returns true once we find a subset. 

    Before the DFS, I sort the array in ascending order first.

    In each DFS level, ignore the duplicated value.

    • cur_sum < 0 ---> return false. 
    • cur_sum == 0 ---> return true;
    • cur_sum > 0 ---> continue on DFS search.

    However, it is a TLE solution, can not pass OJ. 

    Since there are two situations for each element: selected or not. Time complexity is O(2^n).

    class Solution {
    public:
        bool canPartition(vector<int>& nums) {
            sort(nums.begin(), nums.end()); 
            int sum = accumulate(nums.begin(), nums.end(), 0);
            return !(sum & 1) && can_partition_dfs(nums, sum / 2, 0);
        }
        bool can_partition_dfs(vector<int>& nums, int cur_sum, int idx){
            if(cur_sum < 0){
                return cur_sum == 0;
            }
            int can_partition = false;
            for(int i = idx; i < nums.size(); i++){
                can_partition |= can_partition_dfs(nums, cur_sum - nums[i], i + 1);
                while(i + 1 < nums.size() && nums[i] == nums[i + 1]){
                    i++;
                }
            }
            return can_partition;
        }
    };

    Solution two: knapsack problem dynamic programming(AC)

    This problem can be solved by a knapsack model with a dynamic programming philosophy.

    • dp[i][j]: means first i element could form a summation to j

    Time complexity is O(m * sum). Space complexity is O(m * sum).

    class Solution {
    public:
        bool canPartition(vector<int>& nums) {
            int total_sum = accumulate(nums.begin(), nums.end(), 0);
            if(total_sum % 2){
                return false;
            }
            int size = nums.size();
            int sum = total_sum / 2;
            // dp[i][sum]: first i elements could form a summation to sum or not
            vector<vector<bool>> dp(size + 1, vector<bool>(sum + 1, false));
            // initialization
            for(int i = 0; i <= size; i++){
                dp[i][0] = true;
            }
            for (int i = 1; i <= size; i++) {
                for (int j = 1; j <= sum; j++) {
                    if (j >= nums[i - 1] && dp[i - 1][j - nums[i - 1]]){
                        dp[i][j] = true;
                    } else {
                        dp[i][j] = dp[i - 1][j];
                    }
                }
            }
            return dp[size][sum];
        }
    };

     We can optimize the space complexity to O(sum).

    class Solution {
    public:
        bool canPartition(vector<int>& nums) {
            int total_sum = accumulate(nums.begin(), nums.end(), 0);
            if(total_sum % 2){
                return false;
            }
            int size = nums.size();
            int sum = total_sum / 2;
            vector<bool> dp(sum + 1, false);
            dp[0] = true;
            for(auto num : nums){
                for(int j = sum; j >= num; j--){
                    dp[j] = dp[j] || dp[j - num];
                }
            }
            return dp[sum];
        }
    };
  • 相关阅读:
    Golang 函数
    Golang type
    Golang 分支控制和循环
    Golang 字符型
    Golang运算符
    final 和 static 的区别
    Golang标识符命名规则
    Golang值类型与引用类型
    Golang指针
    启动 jvm 参数小总结
  • 原文地址:https://www.cnblogs.com/wdw828/p/6917178.html
Copyright © 2020-2023  润新知