Problem statement:
Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
Note:
- Each of the array element will not exceed 100.
- The array size will not exceed 200.
Example 1:
Input: [1, 5, 11, 5] Output: true Explanation: The array can be partitioned as [1, 5, 5] and [11].
Example 2:
Input: [1, 2, 3, 5] Output: false Explanation: The array cannot be partitioned into equal sum subsets.
Solution: DFS with return value(TLE).
This problem can be solved by DFS with or without a return value. I choose a the DFS template with a bool return value. It returns true once we find a subset.
Before the DFS, I sort the array in ascending order first.
In each DFS level, ignore the duplicated value.
- cur_sum < 0 ---> return false.
- cur_sum == 0 ---> return true;
- cur_sum > 0 ---> continue on DFS search.
However, it is a TLE solution, can not pass OJ.
Since there are two situations for each element: selected or not. Time complexity is O(2^n).
class Solution { public: bool canPartition(vector<int>& nums) { sort(nums.begin(), nums.end()); int sum = accumulate(nums.begin(), nums.end(), 0); return !(sum & 1) && can_partition_dfs(nums, sum / 2, 0); } bool can_partition_dfs(vector<int>& nums, int cur_sum, int idx){ if(cur_sum < 0){ return cur_sum == 0; } int can_partition = false; for(int i = idx; i < nums.size(); i++){ can_partition |= can_partition_dfs(nums, cur_sum - nums[i], i + 1); while(i + 1 < nums.size() && nums[i] == nums[i + 1]){ i++; } } return can_partition; } };
Solution two: knapsack problem dynamic programming(AC)
This problem can be solved by a knapsack model with a dynamic programming philosophy.
- dp[i][j]: means first i element could form a summation to j
Time complexity is O(m * sum). Space complexity is O(m * sum).
class Solution { public: bool canPartition(vector<int>& nums) { int total_sum = accumulate(nums.begin(), nums.end(), 0); if(total_sum % 2){ return false; } int size = nums.size(); int sum = total_sum / 2; // dp[i][sum]: first i elements could form a summation to sum or not vector<vector<bool>> dp(size + 1, vector<bool>(sum + 1, false)); // initialization for(int i = 0; i <= size; i++){ dp[i][0] = true; } for (int i = 1; i <= size; i++) { for (int j = 1; j <= sum; j++) { if (j >= nums[i - 1] && dp[i - 1][j - nums[i - 1]]){ dp[i][j] = true; } else { dp[i][j] = dp[i - 1][j]; } } } return dp[size][sum]; } };
We can optimize the space complexity to O(sum).
class Solution { public: bool canPartition(vector<int>& nums) { int total_sum = accumulate(nums.begin(), nums.end(), 0); if(total_sum % 2){ return false; } int size = nums.size(); int sum = total_sum / 2; vector<bool> dp(sum + 1, false); dp[0] = true; for(auto num : nums){ for(int j = sum; j >= num; j--){ dp[j] = dp[j] || dp[j - num]; } } return dp[sum]; } };