• [SHOI2012] 火柴游戏


    [SHOI2012] 火柴游戏

    [题目链接]

    链接

    [思路要点]

    首先发现移动火柴操作可以放到最后做。每一次移动火柴一定可以看做是添加一根火柴再删除一根火柴,并且可以将任意一次添加和一次删除操作合并为一次移动操作,那么可以考虑只使用添加和删除操作,最后再计算出当前情况下使用几次移动操作最优。

    然而发现并不清楚优先选择添加还是删除,但是我们知道当添加操作次数相同时,删除操作越少越优,所以可以 ( ext{dp}),用状态 (f[i][j]) 表示当前考虑了前 (i) 个数字,当前的添加操作数量为 (j) 时的最少删除操作次数。

    得到这个之后,对于每一对添加操作数量和删除操作数量,可以三分出移动操作数量或者直接枚举取最优解。

    [代码]

    #include<stdio.h>
    #include<cmath>
    #include<algorithm>
    #include<string.h>
    using namespace std;
    const int maxn=205;
    const int inf=0x7f7f7f7f7f;
    int dp[maxn][505],p[5],q[5],n,ad[10][10],de[10][10];
    int num[10][8]={{0,1,1,1,0,1,1,1},{0,0,0,1,0,0,1,0},{0,1,0,1,1,1,0,1},{0,1,0,1,1,0,1,1},{0,0,1,1,1,0,1,0},{0,1,1,0,1,0,1,1},{0,1,1,0,1,1,1,1},{0,1,0,1,0,0,1,0},{0,1,1,1,1,1,1,1},{0,1,1,1,1,0,1,1}};
    char a[maxn],b[maxn];
    int as(int s,int f)
    {
        int i,ans=0;
        for(i=1;i<=7;i++)
        if(num[s][i]==num[f][i])continue;
        else if(num[s][i]==0) ans++;
        return ans;
    }
    int ds(int s,int f)
    {
        int i,ans=0;
        for(i=1;i<=7;i++)
        if(num[s][i]==num[f][i])continue;
        else if(num[s][i]==1) ans++;
        return ans;
    }
    int getans(int i,int j)
    {
        int ans=inf,k,l=0,maxk=min(i,j);
        for(k=0;k<=maxk;k++)
        {
            ans=min(ans,p[1]*(1+i-k)*(i-k)/2+(i-k)*q[1]+
            p[2]*(1+j-k)*(j-k)/2+(j-k)*q[2]+
            p[3]*(1+k)*k/2+k*q[3]);
        }
        return ans;
    }
    
    int main()
    {
        int i,j,k,m,ans=inf;
        scanf("%d",&n);
        scanf("%s %s",a,b); 
        scanf("%d%d%d%d%d%d",&p[1],&q[1],&p[2],&q[2],&p[3],&q[3]);
        for(i=0;i<10;i++)
        {
            for(j=0;j<10;j++)
            {
                ad[i][j]=as(i,j);
                de[i][j]=ds(i,j);
            }
        }
        for(i=0;i<n;i++)
        {
            a[i]-='0',b[i]-='0';
        }
        for(i=1;i<=n;i++)
            for(j=0;j<505;j++)
                dp[i][j]=inf;
        for(m=1;m<=n;m++)
            for(k=0;k<10;k++)
            {
                int add=ad[a[m-1]][k]+ad[b[m-1]][k];
                int del=de[a[m-1]][k]+de[b[m-1]][k];
                for(i=0;i<505;i++)
                    if(i>=add)
                    dp[m][i]=min(dp[m][i],dp[m-1][i-add]+del);
            }
        for(i=0;i<505;i++)
            if(dp[n][i]!=inf)
            ans=min(ans,getans(i,dp[n][i]));
        printf("%d",ans);
        return 0;
    }
    
  • 相关阅读:
    用R语言中的神经网络预测时间序列:多层感知器和极限学习机
    R语言SIR模型(Susceptible Infected Recovered Model)代码sir模型实例
    confirmit中 domainValues() 方法
    confirmit中indexOf()方法
    confitmit中none()方法
    confirmit中any()方法参数问题
    confirmit中方法调用的数组之sort()区别
    confirmit平台问题汇总
    confirmit中创建的 if 判断条件的区别
    专业名称解释笔记
  • 原文地址:https://www.cnblogs.com/wawawa8/p/11095680.html
Copyright © 2020-2023  润新知