• python基础5


    常用内置函数

    chr(98) #返回编号对应的字符
    ord('b')    #返回字符对应的编号
    
    def sayhi():
    pass
    
    name = "alex"
    print(callable(sayhi))    #判断是不是函数,返回bool值
    print(callable(name))
    
    divmod(10,3)    #10/3 返回一个元组除数和余数
    
    for i in filter(lambda x:x>5, range(10)):    #过滤函数
    print(i)
    
    frozenset({1,4,5,5,6})    #去重
    
    def sayhi():
    name="alex"
    print(locals())    #当前作用域的数据以字典形式打印出来
    sayhi()
    
    print(globals()) #把当前程序所在内存里的所有数据都以字典的形式打印出来
    vars()
    
    round(10.26,1)    #保留小数
    
    sorted()    #排序
    
    >>> a = [-5,1,3,5,7,9]
    >>> b = [2,4,6,8]
    >>> for i in zip(a,b):    #组合
    ... print(i)
    ... 
    (-5, 2)
    (1, 4)
    (3, 6)
    (5, 8)
    
    isinstance('b',str)    #判断类型
    
    s1={x:randint(1, 4)for x in sample('abcdefg',randint(3, 6))}
    s2={x:randint(1, 4)for x in sample('abcdefg',randint(3, 6))}
    s3={x:randint(1, 4)for x in sample('abcdefg',randint(3, 6))}
    In [21]: s1,s2,s3
    Out[21]: 
    ({'a': 1, 'd': 1, 'e': 3, 'f': 3, 'g': 1},
    {'a': 2, 'b': 3, 'c': 1, 'e': 3},
    {'a': 4, 'b': 2, 'c': 1, 'd': 3, 'f': 4, 'g': 3})
    mapreduce
    reduce:应用一个函数的两个参数累计的项目序列,从左到右,减少单个值序列。
    例如,减少(lambda x,y:x + y,[1,2,3,4,5))计算((((1 + 2)+(3)+ 4)+ 5)。如果最初的存在,它被放置在物品序列的计算,并作为默认的时候
    In [28]: reduce(lambda a, b : a & b ,map(dict.viewkeys, [s1,s2,s3]))
    Out[28]: {'a'}

    列表生成式

    1
    filter(lambda x: x >= 0 ,data)
    # python3中要想使用filter返回值要加列表 list() 
    2
    [x for x in data if x >= 0]
    # filter函数和列表解析 比 迭代运行速度更快


    生成器
    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

    所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

    要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

    >>> L = [x * x for x in range(10)]
    >>> L
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    >>> g = (x * x for x in range(10))
    >>> g
    <generator object <genexpr> at 0x1022ef630>

    创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

    我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

    如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

    >>> next(g)
    0
    >>> next(g)
    1
    >>> next(g)
    4
    >>> next(g)
    9
    >>> next(g)
    16
    >>> next(g)
    25
    >>> next(g)
    36
    >>> next(g)
    49
    >>> next(g)
    64
    >>> next(g)
    81
    >>> next(g)
    Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    StopIteration

    我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

    当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

    >>> g = (x * x for x in range(10))
    >>> for n in g:
    ... print(n)
    ...
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81

    所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

    generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

    比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

    1, 1, 2, 3, 5, 8, 13, 21, 34, ...

    斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            print(b)
            a, b = b, a + b
            n = n + 1
        return 'done'
    
    #注意,赋值语句:
    
    #1
    #a, b = b, a + b
    #相当于:
    
    #1
    #2
    #3
    #t = (b, a + b) # t是一个tuple
    #a = t[0]
    #b = t[1]
    #但不必显式写出临时变量t就可以赋值。    
    上面的函数可以输出斐波那契数列的前N个数:
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    >>> fib(10)
    1
    1
    2
    3
    5
    8
    13
    21
    34
    55
    done

    仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

    也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

    def fib(max):
        n,a,b = 0,0,1
    
        while n < max:
            #print(b)
            yield b
            a,b = b,a+b
    
            n += 1
    
    return 'done'                

    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

    >>> f = fib(6)
    >>> f
    <generator object fib at 0x104feaaa0>

    这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

    data = fib(10)
    print(data)
    
    print(data.__next__())
    print(data.__next__())
    print("干点别的事")
    print(data.__next__())
    print(data.__next__())
    print(data.__next__())
    print(data.__next__())
    print(data.__next__())
    
    #输出
    <generator object fib at 0x101be02b0>
    1
    1
    干点别的事
    2
    3
    5
    8
    13

    在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

    同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

    >>> for n in fib(6):
    ... print(n)
    ...
    1
    1
    2
    3
    5
    8

    但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

    >>> g = fib(6)
    >>> while True:
    ...     try:
    ...         x = next(g)
    ...         print('g:', x)
    ...     except StopIteration as e:
    ...         print('Generator return value:', e.value)
    ...         break
    ...
    g: 1
    g: 1
    g: 2
    g: 3
    g: 5
    g: 8
    Generator return value: done

    迭代器

    我们已经知道,可以直接作用于for循环的数据类型有以下几种:

    一类是集合数据类型,如list、tuple、dict、set、str等;

    一类是generator,包括生成器和带yield的generator function。

    这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

    可以使用isinstance()判断一个对象是否是Iterable对象:

    >>> from collections import Iterable
    >>> isinstance([], Iterable)
    True
    >>> isinstance({}, Iterable)
    True
    >>> isinstance('abc', Iterable)
    True
    >>> isinstance((x for x in range(10)), Iterable)
    True
    >>> isinstance(100, Iterable)
    False 

    而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

    *可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

    可以使用isinstance()判断一个对象是否是Iterator对象:

    >>> from collections import Iterator
    >>> isinstance((x for x in range(10)), Iterator)
    True
    >>> isinstance([], Iterator)
    False
    >>> isinstance({}, Iterator)
    False
    >>> isinstance('abc', Iterator)
    False

    生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

    把list、dict、str等Iterable变成Iterator可以使用iter()函数:

    >>> isinstance(iter([]), Iterator)
    True
    >>> isinstance(iter('abc'), Iterator)
    True

    你可能会问,为什么list、dict、str等数据类型不是Iterator?

    这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

    小结

    凡是可作用于for循环的对象都是Iterable类型;

    凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

    集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

    Python的for循环本质上就是通过不断调用next()函数实现的,例如:

    for x in [1, 2, 3, 4, 5]:
      pass

    实际上完全等价于:

    # 首先获得Iterator对象:
    it = iter([1, 2, 3, 4, 5])
    # 循环:
    while True:
        try:
            # 获得下一个值:
            x = next(it)
        except StopIteration:
            # 遇到StopIteration就退出循环
            break

     

  • 相关阅读:
    设计模式的四个基本要素
    拖拉记录上下移动--Ajax UI
    Rails-Treasure chest2 嵌套表单;
    YAML(摘录)
    Rails-Treasure chest1 (自定义Model网址;多语言包; 时区设置, TimeZone类; 格式日期时间; 表单单选UI; 表单多选UI;Select2 Plugin)
    iTerm2的设置和Zsh.
    **优化--后端**: 计数缓存counter_cache; rack-mini-profiler(2300🌟) ; bullet(5000✨):侦测N+1query
    优化--前端(全占课,未完成作业:);CDN; Http/2的设置(未完成)
    null值的判断
    if else
  • 原文地址:https://www.cnblogs.com/wangyufu/p/6434432.html
Copyright © 2020-2023  润新知