• read_excle


    Signature:
    pd.read_excel(
        ['io', 'sheet_name=0', 'header=0', 'skiprows=None', 'skip_footer=0', 'index_col=None', 'names=None', 'usecols=None', 'parse_dates=False', 'date_parser=None', 'na_values=None', 'thousands=None', 'convert_float=True', 'converters=None', 'dtype=None', 'true_values=None', 'false_values=None', 'engine=None', 'squeeze=False', '**kwds'],
    )
    Docstring:
    Read an Excel table into a pandas DataFrame
    
    Parameters
    ----------
    io : string, path object (pathlib.Path or py._path.local.LocalPath),
        file-like object, pandas ExcelFile, or xlrd workbook.
        The string could be a URL. Valid URL schemes include http, ftp, s3,
        and file. For file URLs, a host is expected. For instance, a local
        file could be file://localhost/path/to/workbook.xlsx
    sheet_name : string, int, mixed list of strings/ints, or None, default 0
    
        Strings are used for sheet names, Integers are used in zero-indexed
        sheet positions.
    
        Lists of strings/integers are used to request multiple sheets.
    
        Specify None to get all sheets.
    
        str|int -> DataFrame is returned.
        list|None -> Dict of DataFrames is returned, with keys representing
        sheets.
    
        Available Cases
    
        * Defaults to 0 -> 1st sheet as a DataFrame
        * 1 -> 2nd sheet as a DataFrame
        * "Sheet1" -> 1st sheet as a DataFrame
        * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
        * None -> All sheets as a dictionary of DataFrames
    
    sheetname : string, int, mixed list of strings/ints, or None, default 0
        .. deprecated:: 0.21.0
           Use `sheet_name` instead
    
    header : int, list of ints, default 0
        Row (0-indexed) to use for the column labels of the parsed
        DataFrame. If a list of integers is passed those row positions will
        be combined into a ``MultiIndex``. Use None if there is no header.
    skiprows : list-like
        Rows to skip at the beginning (0-indexed)
    skip_footer : int, default 0
        Rows at the end to skip (0-indexed)
    index_col : int, list of ints, default None
        Column (0-indexed) to use as the row labels of the DataFrame.
        Pass None if there is no such column.  If a list is passed,
        those columns will be combined into a ``MultiIndex``.  If a
        subset of data is selected with ``usecols``, index_col
        is based on the subset.
    names : array-like, default None
        List of column names to use. If file contains no header row,
        then you should explicitly pass header=None
    converters : dict, default None
        Dict of functions for converting values in certain columns. Keys can
        either be integers or column labels, values are functions that take one
        input argument, the Excel cell content, and return the transformed
        content.
    dtype : Type name or dict of column -> type, default None
        Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
        Use `object` to preserve data as stored in Excel and not interpret dtype.
        If converters are specified, they will be applied INSTEAD
        of dtype conversion.
    
        .. versionadded:: 0.20.0
    
    true_values : list, default None
        Values to consider as True
    
        .. versionadded:: 0.19.0
    
    false_values : list, default None
        Values to consider as False
    
        .. versionadded:: 0.19.0
    
    parse_cols : int or list, default None
        .. deprecated:: 0.21.0
           Pass in `usecols` instead.
    
    usecols : int or list, default None
        * If None then parse all columns,
        * If int then indicates last column to be parsed
        * If list of ints then indicates list of column numbers to be parsed
        * If string then indicates comma separated list of Excel column letters and
          column ranges (e.g. "A:E" or "A,C,E:F").  Ranges are inclusive of
          both sides.
    squeeze : boolean, default False
        If the parsed data only contains one column then return a Series
    na_values : scalar, str, list-like, or dict, default None
        Additional strings to recognize as NA/NaN. If dict passed, specific
        per-column NA values. By default the following values are interpreted
        as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
    '1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'.
    thousands : str, default None
        Thousands separator for parsing string columns to numeric.  Note that
        this parameter is only necessary for columns stored as TEXT in Excel,
        any numeric columns will automatically be parsed, regardless of display
        format.
    keep_default_na : bool, default True
        If na_values are specified and keep_default_na is False the default NaN
        values are overridden, otherwise they're appended to.
    verbose : boolean, default False
        Indicate number of NA values placed in non-numeric columns
    engine: string, default None
        If io is not a buffer or path, this must be set to identify io.
        Acceptable values are None or xlrd
    convert_float : boolean, default True
        convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
        data will be read in as floats: Excel stores all numbers as floats
        internally
    
    Returns
    -------
    parsed : DataFrame or Dict of DataFrames
        DataFrame from the passed in Excel file.  See notes in sheet_name
        argument for more information on when a Dict of Dataframes is returned.
    File:      c:userslenovoanaconda3libsite-packagespandasioexcel.py
    Type:      function
    

      

  • 相关阅读:
    JavaScript实现Map、Reduce和Filter
    Javascript常用对象的属性和方法
    自己封装的Ajax
    JavaScript函数调用规则
    JavaScript模板引擎使用
    java 简单贪吃蛇
    java邮件发送(含附件)
    java 读写Oracle Blob字段
    java 连接飞信API
    非常棒的Java REST服务器栈
  • 原文地址:https://www.cnblogs.com/wangtaobiu/p/12006528.html
Copyright © 2020-2023  润新知