• Python学习总结 05 pandas


       pandas官方网址 : http://pandas.pydata.org/ 。

           pandas的安装比较复杂,如果想开箱即用,可以考虑下载WinPython。WinPython的官方地址是: http://winpython.github.io/ 。

       pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包,类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:

    from pandas import Series,DataFrame
    import pandas as pd

    一 开发工具

    jupyter notebook是升级版的IPython,可以把代码、运行结果保存在一个notebook中。
    1 使用pip命令安装.jupyter notebook
    $ pip install jupyter
    如果没有安装报Read Timeout异常,是因为Python默认使用的是https://pypi.python.org/pypi这里的python库,通常从国内连接国外的服务器是导致超时的原因,可以设置成国内的pypi镜像站点。k
    比如豆瓣, https://pypi.douban.com/simple , 然后在命令行中添加 -i,pypi镜像参数。可以使用如下命令从豆瓣下载最新的python第三方库, 如果安装jupyter模块失败,可以先删除掉以安装的jupyter模块,在重新安装。
    $ pip uninstall jupyter
    $ pip install jupyter -i https://pypi.douban.com/simple
    2 运行 jupyter notebook
    在控制台输入以下命令,运行jupyter notebook.
    $ jupyter notebook
    然后浏览器会自动运行,打开一个新的网页,说明jupyter notebook运行成功了。
    图-jupyter notebook
    3,新建python文件
    在jupyer右上角New 下拉框中选择当前Python环境的解释器,在笔者的机器是Python3,选中后会弹出一个新的网页。
    在网格(cell)中,输入python代码,然后输入 ctrl + Enter执行python脚本。如下图所示。
    图-jupyter运行python脚本
     
    jupyter的常用快捷键
    • 执行当前cell,并自动跳到下一个cell:Shift Enter
    • 执行当前cell,执行后不自动调转到下一个cell:Ctrl-Enter
    • 是当前的cell进入编辑模式:Enter
    • 退出当前cell的编辑模式:Esc
    • 删除当前的cell:双D

    二 Pandas的数据结构

      Pandas中有2种主要的数据结构: Series和DataFrame,它们为大多数应用提供了一种可靠的,易于使用的基础。

    三  Pandas操作文件

    1 读取文件到pandas

    import pandas as pd
    users= pd.read_table('e:/movieusers.txt' )
    print( users)

      返回结果:

              1|24|M|technician|85711
    0              2|53|F|other|94043
    1             3|23|M|writer|32067
    2         4|24|M|technician|43537

    2 读取文件,或略分隔符。

    from pandas import Series,DataFrame
    import pandas as pd
    
    users= pd.read_table('e:/movieusers.txt' , sep='|'  )
    print( users)

      返回结果:

           1  24  M     technician  85711
    0      2  53  F          other  94043
    1      3  23  M         writer  32067
    2      4  24  M     technician  43537

    3 读取文件,或略表头

    from pandas import Series,DataFrame
    import pandas as pd
    
    user_cols=['user_id' , 'age', 'gender' , 'occupation' , 'zip_code'      ]
    users= pd.read_table('e:/movieusers.txt' , sep='|' , header=None , names=user_cols ) print( users)

      返回结果:

         user_id  age gender     occupation zip_code
    0          1   24      M     technician    85711
    1          2   53      F          other    94043
    2          3   23      M         writer    32067

    三 pandas写入csv文件

    import pandas as pd
    a = ['one','two','three']
    b = [1,2,3]
    english_column = pd.Series(a, name='english')
    number_column = pd.Series(b, name='number')
    predictions = pd.concat([english_column, number_column], axis=1)
    #another way to handle
    save = pd.DataFrame({'english':a,'number':b})
    save.to_csv('b.txt',index=False,sep='')

    参考资料:

    http://www.cnblogs.com/chaosimple/p/4153083.html

    http://www.open-open.com/lib/view/open1402477162868.html

  • 相关阅读:
    【Difference Between Primes HDU
    【Pet HDU
    《Java程序设计实验》 软件工程18-1,3 OO实验2
    【数据结构作业】-【带头结点的单链表就地逆置】
    【Miscalculation UVALive
    【Bit String Reordering UVALive
    【Bazinga HDU
    (转载)博弈汇总【巴什博奕,威佐夫博弈,尼姆博弈,斐波那契博弈】
    【Audiophobia UVA
    【Calling Circles UVA
  • 原文地址:https://www.cnblogs.com/wangshuo1/p/6260189.html
Copyright © 2020-2023  润新知