一本通原题
事实上这题是快速幂+扩展Lucus定理+扩展BSGS的题。
事实上,只要做出这三道模板题就可以做出来了
【模板】快速幂||取余运算
【模板】exBSGS/Spoj3105 Mod
【模板】扩展卢卡斯
#include<cstdio>
#include<cctype>
#include<cmath>
#include<map>
#define re register
#define ll long long
using namespace std;
namespace IO
{
const int SIZE=1<<25;
char ibuf[SIZE],*iS,*iT;
#define gc() (iS==iT?(iT=(iS=ibuf)+fread(ibuf,1,SIZE,stdin),iS==iT?EOF:*iS++):*iS++)
template<typename T>
inline void read(T & x)
{
x=0;
bool b=false;
char ch=gc();
while(!isdigit(ch)&&ch^'-')
ch=gc();
if(ch=='-')
{
b=true;
ch=gc();
}
while(isdigit(ch))
{
x=(x<<1)+(x<<3)+(ch^'0');
ch=gc();
}
if(b)
x=~x+1;
return;
}
#undef gc
char Out[1<<30],*fe=Out,ch[25];
int num=0;
template<typename T>
inline void write(T x)
{
if(!x)
*fe++='0';
if(x<0)
{
*fe++='-';
x=-x;
}
while(x)
{
ch[++num]=x%10+'0';
x/=10;
}
while(num)
*fe++=ch[num--];
*fe++='
';
}
inline void write_str(char *s)
{
for(re int i=0; s[i]; i++)
*fe++=s[i];
*fe++='
';
}
inline void flush()
{
fwrite(Out,1,fe-Out,stdout);
fe=Out;
}
}
using namespace IO;
namespace quick
{
template<typename T1,typename T2,typename T3>
inline T1 quickpow(T1 a,T2 b,T3 n)
{
T1 res=1;
while(b)
{
if(b&1)
res=res*a%n;
a=a*a%n;
b>>=1;
}
return res;
}
}
namespace Exlucus
{
inline void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(!b)
{
d=a;
x=1;
y=0;
return;
}
exgcd(b,a%b,d,y,x);
y-=a/b*x;
return;
}
inline ll fac(ll n,ll pi,ll pk)
{
if(!n)
return 1ll;
ll res=1ll;
for(re int i=2; i<=pk; ++i)
if(i%pi)
res=res*i%pk;
res=quick::quickpow(res,n/pk,pk);
for(re int i=2; i<=n%pk; ++i)
if(i%pi)
res=res*i%pk;
return res*fac(n/pi,pi,pk)%pk;
}
inline ll inv(ll n,ll mod)
{
ll x,y,d;
exgcd(n,mod,d,x,y);
return (x%mod+mod)%mod;
}
inline ll CRT(ll b,ll mod,ll p)
{
return b*inv(p/mod,mod)%p*(p/mod)%p;
}
inline ll C(ll n,ll m,ll pi,ll pk)
{
ll up=fac(n,pi,pk),d1=fac(m,pi,pk),d2=fac(n-m,pi,pk),k=0;
for(re ll i=n; i; i/=pi)
k+=i/pi;
for(re ll i=m; i; i/=pi)
k-=i/pi;
for(re ll i=n-m; i; i/=pi)
k-=i/pi;
return up*inv(d1,pk)%pk*inv(d2,pk)%pk*quick::quickpow(pi,k,pk)%pk;
}
inline ll exlucus(ll n,ll m,ll p)
{
ll res=0,tmp=p,pk;
int lim=sqrt(p)+5;
for(re int i=2; i<=lim; ++i)
if(tmp%i==0)
{
pk=1;
while(tmp%i==0)
{
pk*=i;
tmp/=i;
}
res=(res+CRT(C(n,m,i,pk),pk,p))%p;
}
if(tmp>1)
res=(res+CRT(C(n,m,tmp,tmp),tmp,p))%p;
return res;
}
}
namespace ExBSGS
{
#define mul(a,b,p) (1ll*a*b%p)
template<typename T>
inline T gcd(T a,T b)
{
return b?gcd(b,a%b):a;
}
map<ll,ll>Hash;
inline ll exBSGS(ll a,ll b,ll p)
{
a%=p;
b%=p;
if(b==1)
return 0;
if(!b&&!a)
return 1;
if(!a)
return -1;
if(!b)
{
ll res=0,d;
while((d=gcd(a,p))!=1)
{
++res;
p/=d;
if(p==1)
return res;
}
return -1;
}
ll res=0,A=a,B=b,P=p,C=1,d;
while((d=gcd(A,P))!=1)
{
if(B%d)
return -1;
P/=d;
B/=d;
C=mul(C,A/d,P);
++res;
if(C==B)
return res;
}
Hash.clear();
ll f=1,t=sqrt(P)+1;
for(re int i=0; i<t; ++i)
{
Hash[mul(f,B,P)]=i;
f=mul(f,A,P);
}
int tf=f;
f=mul(f,C,P);
for(re int i=1; i<=t; ++i)
{
if(Hash.find(f)!=Hash.end())
return res+i*t-Hash[f];
f=mul(f,tf,P);
}
return -1;
}
#undef mul
}
using namespace Exlucus;
using namespace quick;
using namespace ExBSGS;
int main()
{
re ll y,z,p,T;
int type;
for(read(T); T; T--)
{
IO::read(type);
IO::read(y);
IO::read(z);
IO::read(p);
if(type==1)
IO::write(quick::quickpow(y,z,p));
else if(type==3)
IO::write(Exlucus::exlucus(z,y,p));
else if(type==2)
{
ll ans=ExBSGS::exBSGS(y,z,p);
if(~ans)
IO::write(ans);
else
IO::write_str("Math Error");
}
}
IO::flush();
return 0;
}